5G SBP Use Case - Factory Floor Visual Inspection - ONE Summit Demo (November 2022) Use this template to submit Use Cases for submission to the 5G Super Blueprint Use Case & Requirements Advisory Group. All input is required unless marked "(optional)" | Use Case Name: | Factory Floor Visual Inspection | |--|--| | Use Case Description: | demonstrate a factory floor visual inspection Use Case with hard hat and facemask detection using static transport slicing. | | | Leverage the existing 5G SBP lab hosted @kaloom Montreal using Free5GC + ONAP + EMCO + Kaloom Fabric, UPF and vRouter with network slicing + GenXComm RAN + IBM visual inspection models and AI software running on Nvidia T4 GPUs + Aarna AMCOP + A10 FW | | Problem Statement and how is the problem solved: | Problem Statement: Ensure safety on a factory floor | | | Solution: Automated end-to-end solution with AI that detects and alerts when hard hat and/or facemask is not being worn by an individual. | | Users Stories | Worker A enters an area of the factory floor where hard hats are required. Worker A <u>IS</u> wearing a hard hat. The system detects that Worker A <u>IS</u> wearing a hard hat and responds with action A. Worker B enters an area of the factory floor where hard hats are required. Worker B is <u>NOT</u> wearing a hard hat. The system detects that Worker B is <u>NOT</u> wearing a hard hat and responds with action B. Worker C enters an area of the factory floor where facemasks are required. Worker C <u>IS</u> wearing a facemask. The system detects that Worker C <u>IS</u> wearing a facemask and responds with action C. Worker D enters an area of the factory floor where facemasks are required. Worker D is <u>NOT</u> wearing a facemask. The system detects that Worker D is <u>NOT</u> wearing a facemask and responds with action D. | | Goals and Requirements | Mandatory Goals: Demonstrable Proof of Concept End to End system demonstrating: Hard Hat detection Facemask detection Static Transport Slicing Video shot in the lab depicting mandatory goals above. Slideware Build Guide | | | Need to sort out which goals below are attainable, which are stretch, which are roadmap | | | Attainable/Stretch/Roadmap Goals (in addtion to above), prioritized: "Live" demo at the ONE Summit venue. The blue box in the lower left in the below lab diagram is setup at the venue in Seattle and demonstrated live. Massive IoT simulation. A massive IoT simulator (open source preferred) is used to demostrate scalability of the system. Remote Attestation (Peraton Labs) - authenication of IoT devices (cameras). | | Demo Storyline (optional) | | | Interaction with other open source projects and components | Free 5GC ONAP EMCO Aarna AMCOP A10 Firewall |