Security Best Practices

2023-06-21-TAC-LfnProjectSecurity.pptx

Share your community's best practices that might be applicable to other projects.

Vulnerability Reporting

® Create formal bug reporting process for the project.

Demonstrate Security Awareness

® Adopt OpenSSF badging and show progress to Gold badging.
© https://github.com/coreinfrastructure/best-practices-badge
© https://github.com/ossf/scorecard

1
.
How OpenSSF projects work together
Identify critical projects: [1Bl Improve critical projects:
[~] ¢] [F] = L] [V] a
C o
Developer Consumer
———————
I De es | Vulnerability
pendencies) i H
::lit?ig: = N e e] information L |
information
A. Secure Software edX courses BP] M. Supply-chain Levels for Software Artifacts (SLSA) [I)
B. Security Knowledge Framework (SKF): Hands-on course (education), with OWASP [BP] N. allstar [C]
C. OpenSSF Best Practices Badge [BP] 0. package-feeds / package-analysis [C]
D. Scorecards [BP] P. eriticality_scere [C]
E. Great MFA distribution project [BP] Q. Harvard study [C]
F. Common Requirements Enumeration (CRE) [BP] R. Project Alpha-Omega [§]
G. Guide to coordinated vulnerability disclosure for 0SS projects; s. sigstore [S]
Vulnerability Disclosures Whitepaper [V] . GNU Toolchain Infrastructure (GTI) support [S]
i :ﬁ;“f:lm il B Best Practices WG [BP] B security Tooling WG [T]
J. Project-Security-Metrics: Dashboard [ST] Bl Vulnerability Disclosures WG [V] Bl Supply Chain Integrity WG [I]
K. ossf-cve-banchmark: measure tools [T] Identifying Security Threats WG [ST] Top-Level / Special Projects [S]
L. Web Application Definition [T] B securing Critical Projects WG [C]

® Linux Foundation security community

Linux Foundation’s Security Community

a o~ o e H oon
Build Package
Developer Consumer
- -
Iﬂ 1 Dependencies
| S -
1. OpenSSF: find, inform, automate, fix, and educate 11. TUF: The Update Framework maintains the security of software update systems
2.5PDX (150 5¢ 12. Uptane: protects software updates delivered overhe-air (o automobiles.
3.CNCF: g4 13. sigstore: eases the adoption of cryplographic software signing (of antifacts such as release files and

4. Bost Prac I container images) backed by tamper-resistant public logs
14, Git: Extending git (o enable pluggable support for signatures

5. SSDF: Secu s set courses 15. patatt tool: end{o-end cryplographic attestalion to patches sent via email

6. Lat's Encrypt: h ity 0+ the htps: protocol 16. OpenChain (1SO 5230): international standard for open chain
7.666: Gon protects datain use in memory 17, LFX: identity OSS vulnorabilities and code secrots, powered by Snyk and BluBracket

8.CHAOSS: y Hoal Source Safiware creates analytics and metrics for OSS that 18, Tern: software compositin analysis 0ol and irary 10 generales a layer-by-layer view of what's included
define health and idenify risk within a container image

s Partn calox. automatically generate a SBOM from your CLCD system

Science at the report 1.
C tand Census Il of Open Source Software 2 VCD piugrin identifying confidential or sensitive information in code, and catch security violations
ntegrity of software supply chains. 21. gsquery: performant endpoint visibilty

a framework designed 1o

Practice Secure Lifecycle Management (per release)

Retire technical debt.

Include vulnerability management.

Identify and remove unmaintained code from release package.

Upgrade dependencies (libraries, databases, language versions.)

Interface security (APIs, GUIs, Portals.)

Remove all secrets from code.

Goal for LFN projects: create an LFN security cookbook that documents how security best practices and tools can be implemented and used
across LFN project.

® Starting point: ONAP implementation of Security Best Practices, LFX security.

https://wiki.lfnetworking.org/download/attachments/56068012/2023-06-21-TAC-LfnProjectSecurity.pptx?version=1&modificationDate=1692148553000&api=v2
https://www.bestpractices.dev/en
https://github.com/coreinfrastructure/best-practices-badge
https://github.com/ossf/scorecard
https://wiki.onap.org/display/DW/ONAP+Security+coordination
https://lfx.linuxfoundation.org/tools/security/

Documentation

Provide security transparency to the users of the open source code.
Known open vulnerabilities in project code and dependent packages.
Vulnerabilities closed in the release by fixing code and upgrading packages.
Secure and resilient configuration settings
Integration points with external security system

O Certificate Authority (CA)

o Certificate management protocol support

© LDAP

© OAuth Authorization Server

© Log management systems
Language version dependencies
Third party component and version dependences

© databases such as Cassandra

© messaging such as Kafka

CI/CD best practices

Automate rejection of insecure merges (planned PoC in ONAP)

Architecture

Include logging of security events in the project.

For stand-alone projects: integrate authentication and authorization into web interfaces and APIs.
Support confidentiality on all interfaces. For HTTP, this typically means supporting TLS 1.2+.
Where containers are used: follow the CIS benchmarks, such as the Docker benchmarks.
Where K8S is used: follow the CIS Kubernetes benchmarks.

Supply Chain Security

Secure the commit process to prevent unauthorized code from being included in an open source project

Digitally sign all code produced by the project using an X.509 code signing cert issued by a public certificate authority (CA).
The Linux Foundation has a secure signing process.

Create an SBOM for each application produced by a project team.

Use SPDX, CycloneDX or SWID for SBOM format.

Digitally sign the SBOM with an x.509 signing certification issued by a public CA.

SBOMSs can be automatically generated in the CI/CD pipeline using a software composition analysis tool.

Software Bill Of Materials (SBOM)

ONAP work - https://wiki.onap.org/display/DW/Software+Bill+of+Materials
ONAP presentation - SBOM_DBOM.pptx
Other references
© https://github.com/opensbom-generator/spdx-sbom-generator
© https://github.com/CycloneDX/cyclonedx-maven-plugin
Scripts for automated SBOM generation by Maven
© Robert Varga, February-24-2021:

As per my Al, | have reached out to Jessica. The LFN-side of the build tools is tracked here, the corresponding patch here .

For the purposes of OpenDaylight, | think using a tool outside of our build system (Maven) is less than optimal. Since OpenDaylight has

a project managing default build system policy, | have filed blocked URLODLPARENT-280 - Generate an SBOM for artifacts RESOLVED
to track this effort. There are maven plugins for both SPDX and CycloneDX. The former is under development and it seems to have a
number of issues, while the latter seems to be a breeze to integrate.

So the initial test is to add the plugin execution via a trivial patch and then let the normal build pipeline treat SBOMs just as any other
maven artifact. This results in metadata being correctly propagated to properly propagate to Nexus even for snapshots (https://nexus.
opendaylight.org/content/repositories/opendaylight.snapshot/org/opendaylight/odlparent/opendaylight-karaf-empty/10.0.0-SNAPSHOT/,
scroll down to see latest artifacts) and also to staging repositories, for example here: https://nexus.opendaylight.org/content/repositories
/odIparent-2204/org/opendaylight/odiparent/opendaylight-karaf-empty/10.0.0/ .

From what | can tell the SBOM is reasonably complete, but it would be nice if someone could validate it to see whether we need to
provide more metadata

Integrate security testing in CI/CD

Test Type Description Example LF

Tools Provided
Tools

https://wiki.onap.org/display/DW/Software+Bill+of+Materials
https://wiki.onap.org/download/attachments/107252887/SBOM_DBOM.pptx?version=1&modificationDate=1630357039000&api=v2
https://github.com/opensbom-generator/spdx-sbom-generator
https://github.com/CycloneDX/cyclonedx-maven-plugin
https://wiki.lfnetworking.org/display/~rovarga
https://jira.linuxfoundation.org/browse/RELENG-4104
https://gerrit.linuxfoundation.org/infra/c/releng/global-jjb/+/69687
https://jira.opendaylight.org/secure/viewavatar?size=xsmall&avatarId=10311&avatarType=issuetype
https://git.opendaylight.org/gerrit/c/odlparent/+/99743
https://nexus.opendaylight.org/content/repositories/opendaylight.snapshot/org/opendaylight/odlparent/opendaylight-karaf-empty/10.0.0-SNAPSHOT/
https://nexus.opendaylight.org/content/repositories/opendaylight.snapshot/org/opendaylight/odlparent/opendaylight-karaf-empty/10.0.0-SNAPSHOT/
https://nexus.opendaylight.org/content/repositories/odlparent-2204/org/opendaylight/odlparent/opendaylight-karaf-empty/10.0.0/
https://nexus.opendaylight.org/content/repositories/odlparent-2204/org/opendaylight/odlparent/opendaylight-karaf-empty/10.0.0/

Static Application Security
Testing (SAST)

Software Composition
Analysis (SCA)

Dynamic Application
Security Testing (DAST)

Container Scanning

Code Coverage Testing

Code Quality

Other tools

Detects vulnerabilities in the code written by the project team. Some SAST tools provide autofix capabilities.

Detects known CVEs in third party package used by the project team in their code.

Detects vulnerabilities in a running application by simulating attacks to all interfaces and examining its running state, and its
responses to the simulated attacks.

Requires the project team to create a traffic file that can be replayed in the pipeline.

Detects vulnerabilities in container base images and open source dependencies used in base images and Dockerfile
commands.

Some products include autofix capabilities.

Verifies and validates code quality by evaluating the amount of code executed by automated tests.

Measures the quality of the code produced by the project team. Code quality measures include maintainability, clarity,
testability, portability, robustness, reusability, complexity, safety and security.

Never hardcode secrets in code.

®* Remote attestation (SEDIMENT)
¢ 3" party API checks

Managing dependencies

* Direct dependencies are straightforward.
© Upgrade direct dependencies to the latest supported version with each release.
© Prioritize upgrading direct dependencies with effective vulnerabilities.

= An effective vulnerability is one that can be executed by the application containing it.
® Not all vulnerabilities in a package are in code that is used by the application.

© Prioritize upgrading direct dependencies on deprecated versions.
o Prioritize upgrading direct dependencies containing vulnerable dependencies.

© Dependencies with zero-day critical vulnerabilities may require upgrades and emergency releases. A good example is Log4J.

® Transitive dependencies are more difficult.

© May be resolved by upgrading to a newer version of the direct dependency containing it.

© Some transitive dependencies can be upgraded independent, but this requires more testing.
® How to automate the mitigation?

© Some container scanning tools can automatically upgrade open source dependencies used in container base images.

Snyk
Veracode

SonarCloud

Sonatype
NexusIlQ

Veracode

Mend

AppScan

Snyk
Aqua/Trivy
JFrog Xray

StackRox
SonarCloud

SonarCloud

Snyk

Blubracket

NexuslQ
(ONAP only)

Snyk

?”?

Snyk

??

??

	Security Best Practices

