
Please direct any questions to lfn-info@linuxfoundation.org. 

LF Networking Whitepaper
Presented by the LFN Technical Advisory 
Council (TAC)

mailto:lfn-info@linuxfoundation.org


2LFN Networking Whitepaper

Table of Contents
1 Introduction...................................................................................................................... 3

2 LFN Landscape................................................................................................................. 7

3 Brief Project Overview..................................................................................................11

4 LFN Integration Points..................................................................................................41

5 Conclusion, Call for Action, and Further Reading....................................................45

6 Glossary...........................................................................................................................47



3LFN Networking Whitepaper

Introduction
Summary
This whitepaper is intended for anyone who is interested in the intersection of 
modern network design and the open source networking project landscape. System 
architects, developers, product and project managers, network operators, system 
integrators, and more should all find useful information here that will help better 
understand the state-of-the-art in networking technology and determine how the 
LF Networking (LFN) projects from the Linux Foundation may be used as building 
blocks for modern networks. It was prepared by a working group of the LFN 
Technical Advisory Council (TAC).

This document does not intend to prescribe the "right" solution for building a network. 
There is more than one way of doing that and it all depends on the network designer’s  
preferences and available resources. Instead, we try to introduce the capabilities 
of each LFN project and suggest potential ways they can be used in harmony. One 
of the goals of this whitepaper is to solicit engagement from potential users and 
contributors to the LFN projects. You are strongly encouraged to share your insights 
and thoughts with the LFN community on this document as well as on any of the 
projects themselves. The LFN Technical Advisory Committee (TAC) mailing list is one 
place to start such engagement. Please see the details in chapter 5.

Background
Just over two decades ago, the network was mainly a fixed voice network in widespread 
use in mature markets but with limited reach in emerging economies. Cellular 
infrastructure and the internet were only just starting to appear. Each regional 
network was built and run by a Communications Services Provider (CSP) who would 
acquire the underlying proprietary technology from Network Equipment Providers 
(NEPs) and charge subscribers to use the network. The resulting networks were 
largely homogenous with most of the equipment typically coming from a single vendor.

In this traditional model, the technology and product roadmap of the CSP was 
the technology and product roadmap of their NEP which was driven by jointly 
developed standards. Standards-led product development led to decentralized 
yet globally compatible service offerings, enabling worldwide roaming and an 
unprecedented level of compatibility over defined reference points and across 
many vendors. Development costs for the NEPs were high, ultimately resulting in 

https://wiki.lfnetworking.org/pages/viewpage.action?pageId=327908


4LFN Networking Whitepaper

an industry consolidation. Capital and operational costs were high for the CSP, but 
these costs were predictable and could be recovered over time from the subscriber 
population in a relatively uncompetitive market.

Situation
Move forward a short twenty years or so and the industry has transformed. Mobile 
and internet are booming worldwide. Traffic has moved from circuit-switched voice 
to packet-switched data. The network has far greater reach: hundreds of millions 
of people in mature and emerging economies worldwide now stay connected to 
the network to regularly access valued consumer services such as streaming, and 
business services such as video conferencing. Capacity has significantly increased 
and demand continues to grow as more devices connect to the network and 
services consume more bandwidth. Markets today are far more competitive and 
communications services are increasingly commoditized. As consumers, we pay less 
and get more. The network itself has become the foundation for the new, global 
digital economy of the 21st century.

Despite these advances, if we scratch the surface of the industry a little, we see 
that business models and ways of cooperating around technology remain largely 
unchanged from twenty or even one hundred years ago.

With network functions deployed as physical appliances, being pre-integrated 
bundles of hardware and software, new services require changing the physical 
structure of the network. This takes as long as months or even years and incurs 
the cost of a field workforce. With Network Functions Virtualization (NFV), there has 
been movement from appliances to separation of hardware and software which has 
reduced time to deploy new services.

The industry challenge is that the traditional networks that are the foundation of 
the CSP business can, in fact, be slowing the business. With consumers paying less 
to get more each year, the CSP must continuously create new services and provide 
more bandwidth at a lower cost each year just to remain viable as a business. The 
underlying network technologies and closed supplier ecosystems prevent the CSP 
from leveraging the open market to introduce new capabilities to reduce costs or 
innovate to create a new service. The tipping point has already been reached in 
highly competitive markets such as India where CSPs are disappearing from the 
market or are merging but still losing customers to competition. From the once 
flourishing NEP ecosystem, less than a handful of vendors remain today. Despite 
the network itself becoming the foundation for the new global digital economy, the 
industry that provides the network is facing significant challenges.



5LFN Networking Whitepaper

How then does the communications industry and its suppliers move to the open model 
of innovation, development and collaboration enjoyed by other technology-based 
industries? Enter open source. Benefits of open source in the enterprise domain include 
higher quality software, improved security, lower cost of ownership and greater 
innovation. Linux has long been a leader in open source for operating systems, 
successful as a result of strong governance and collaboration and without one vendor 
controlling development or direction. Traditionally, the pace of innovation in the 
networking industry has been determined by a process that included standards creation,  
separate implementation based on each NEP’s interoperation, and multi-vendor 
interoperability testing. Oftentimes, several iterations of the process were required 
until the technology was ready for wide deployment.

“Standards and open source, better together” means that open source software 
can accelerate and simplify the process as the open source implementation of 
the standards provides immediate feedback loop to the standard creation, and a 
reference implementation for equipment providers and operators.

In recognizing both the importance of communications to the emerging global digital 
economy and to improving lives of people everywhere, and the challenges facing 
the communications industry, the Linux Foundation established LF Networking (LFN) 
as the umbrella organization to provide platforms and building blocks for network 
infrastructure and services across service providers, cloud providers, enterprises, 
vendors, and system integrators that enable rapid interoperability, deployment, and 
adoption.  

LFN increases the availability and adoption of quality open source software to 
reduce the cost of building and managing networks, thus giving CSPs, cloud 
providers, enterprises and others the means to:

•	 significantly reduce cost of the networks on which their business depends

•	 gain control of their network and product roadmap

•	 introduce new capabilities and services more quickly

•	 reduce capital and operational costs, for example by increasing the number 
of functions that can be remotely deployed and maintained, through 
automating operations and through increased use of commodity hardware

•	 increase security through having multiple entities review the software

While there are benefits from using open source, the benefits are greater to those 
who also contribute to open source. Per an article in the Harvard Business Review, 

https://hbswk.hbs.edu/item/the-hidden-benefit-of-giving-back-to-open-source-software


6LFN Networking Whitepaper

this is because “Companies that contribute and give back learn how to better use 
the open source software in their own environment,” and “...paying employees 
to contribute to such software boosts the company’s productivity from using the 
software by as much as 100 percent, when compared with free-riding competitors.”

The value of open source is not missed on the NEPs, many of who use Linux as the 
operating system for their network equipment. Increased adoption of open source 
in other areas of their products will help NEPs improve quality and output while 
reducing development and maintenance costs.  

China Mobile, AT&T, and Rakuten are examples of organizations using open source. 
US military research agency DARPA has stated its intention of establishing an open 
source program for 5G and the US Congress is legislating to provide funding. It 
is expected that open source will significantly displace proprietary systems from 
networks in the coming years, and LFN has a significant contribution to make.  

As this transition proceeds, in coming years when you scratch the surface of the 
network, you will see a markedly transformed network underpinning the modern, 
digital economy.



7LFN Networking Whitepaper

LFN Landscape
External Landscape - Other open source projects, 
Standards Definition Organizations (SDOs)
As an open source community, where operators and equipment vendors 
collaborate on building the reference implementation of next-generation network 
construction, LFN has been committed to the collaboration of standards and open 
source since its establishment, and has promoted cross-organizational industry 
cooperation including a series of whitepapers.

The traditional CSP has a relatively simple business model, a long network 
construction and service introduction cycle, and is accustomed to business 
operations based on user access and basic network planning, construction, and 
maintenance according to the physical network technology field. Hence, we are now 
facing a partially standardized Communication Technology (CT) industry chain with 
highly standardized network functions (NF) as well as highly customized operation 
and maintenance management.

Traditional communication network technology domain Landscape

In order to break the closed business R&D and equipment R&D ecology of the 
communications industry, the industry’s leading CSPs joined hands with vendors in 
creating LF Networking (or LFN in short), as a vehicle to unite industry forces such as 
standards and open source, hoping to build a truly open next-generation network 
innovation technology ecosystem.

This "openness" is embodied in the following three aspects:



8LFN Networking Whitepaper

•	 Open infrastructure: Through disaggregation between software and 
hardware for telecommunications equipment, it is now possible for the CT 
industry to share a common hardware infrastructure with the IT industry, 
and even further, to promote jointly a common open hardware platform. 
This brings benefits for innovation and scale as a result of the industrial 
integration of CT and IT at the hardware level.

•	 Open NF O&M (Operation and Maintenance): Disaggregation between 
the control plane, data planes and management plane of NF software, 
combined with a generalized and standardized end-to-end orchestration 
platform to stitch centralized control and management domain controllers, 
is driving a transition of the NF software from complex monolithic systems to 
sophisticated micro services. On the one hand, it can better learn and draw 
on the advanced technology of common IT architecture and public software 
components, and on the other hand, it can help lower the entry barrier 
standard of small and medium equipment providers and promote industrial 
integration at the level of CT and IT software.

•	 Open business customization: Through the decoupling of the general 
business design orchestration management platform from specific business 
scenarios and specific professional fields, the “building block” type of 
business design and deployment, operation and maintenance customization 
capabilities are realized. In this way, basic network service providers, 
communication business service providers, and vertical industry service 
providers are converging at the business level.

Vision of Next Generation Network Technology Landscape (with LFN)



9LFN Networking Whitepaper

As shown in the figure, in order to achieve the three-level open target vision described 
above, it is necessary to provide standardized touch points for interoperability:

•	 with a common infrastructure and management platform;

•	 with network elements in various network technology areas for Lifecycle 
Management (or LCM in short), collection, analysis and configuration control;

•	 to stitch across various network technologies to achieve an end-to-end 
service orchestration and capability exposure platform.

Internal Landscape
LFN projects address the touch points mentioned above and offer functionality 
related to the different layers required for building a modern network.

It’s worth looking at the projects within the LFN umbrella in the context of the 
network itself.

This starts with the Transport Layer (also referred to as the ‘Datapath’), where user data  
is moved from one point to another and speed and reliability are key. The FD.io project  
focuses on fast packet processing, with the promise to move data up to one hundred  
times faster. FD.io’s work applies to multiple layers of the network including Layer 2  
Data, Layer 3 Network, Layer 4 Transport, Layer 5 Session, and Layer 7 Application.

The next layer is the Network Operating System (NOS), where the essential software 
components required for building a network device are integrated and packaged 
together. OpenSwitch (OPX) is a NOS that abstracts the complexity and hardware 
implementation details of network devices, and exposes a unified interface towards 
the higher network layers.

The Network control layer is where end-to-end complex network services are 
designed and executed. It relies heavily on network modeling that allows network 
designers to create the desired services. ONAP, OpenDaylight, and Tungsten Fabric 
take network service definitions as input, break them into their more basic building 
blocks, and then interface with the lower layers of the network to instantiate 
and control the service components. The network control layer also provides the 
interface to Operational and Business Support Systems (OSS/BSS) where ONAP 
provides the management and orchestration functions that ensure OSS/BSS can 
manage modern dynamic networks.

The top layer of network functionality includes the components which provide 
visibility into the state of the network as well as automated network management. 



10LFN Networking Whitepaper

PNDA and SNAS can collect high volumes of network data in real time, and make 
them available to external management systems. ONAP is another entity that 
collects network performance and fault data. All the collected data can be used 
by the ONAP policy-driven control loop automation which can take action to 
dynamically control the network in response to changing demand. Network faults 
may also be detected in this layer and in many cases the combined analytics 
capabilities of the projects can be used to trigger automation that provides self-
healing functionality to the network.   

The OPNFV project and the Common NFVi Telco Taskforce (CNTT) initiative focus on 
the integration of the different layers and provide tools and reference architectures 
for building networks. In addition, OPNFV provides a verification program for 
network infrastructure and virtual network functions to ensure that the different 
components of the network are fully compatible with each other and provide the 
expected functionality and performance.



11LFN Networking Whitepaper

Brief Project Overview
Table of Contents

3.1 FD.IO............................................................................................................................. 11

3.2 ONAP............................................................................................................................ 17

3.3 OPNFV and CNTT........................................................................................................ 21

3.4 OpenDaylight.............................................................................................................. 26

3.5 OpenSwitch................................................................................................................. 30

3.6 PNDA............................................................................................................................ 35

3.7 SNAS............................................................................................................................. 37

3.8 Tungsten Fabric.......................................................................................................... 38

3.1 FD.IO
FD.io (Fast Data – Input/Output) is a collection of several projects that support flexible,  
programmable packet processing services on a generic hardware platform. FD.io 
offers a home for multiple projects fostering innovations in software-based packet 
processing towards the creation of high-throughput, low-latency and resource-
efficient IO services suitable to many architectures (x86, ARM, and PowerPC) and 
deployment environments (bare metal, VM, container). FD.io provides “universal” 
dataplane functionality and acceleration at scale, within the LFN ecosystem. 

The core component is the highly modular Vector Packet Processing (VPP) library 
(details below) which allows new graph nodes to be easily “plugged in” without 
changes to the underlying codebase. This gives developers the potential to easily 
build any number of packet processing solutions.

http://fd.io/


12LFN Networking Whitepaper

FD.io Vector Packet Processor (VPP)

FD.io's Vector Packet Processor (VPP) is a fast, scalable layer 2-4 multi-platform 
network stack that runs in Linux user space on multiple architectures including x86, 
ARM, and Power architectures. 

Vector vs Scalar Processing

FD.io VPP is developed using vector packet processing, as opposed to scalar 
packet processing. Vector packet processing is a common approach among high 
performance packet processing applications. The scalar based approach tends 
to be favored by network stacks that don’t necessarily have strict performance 
requirements.

Scalar Packet Processing

A scalar packet processing network stack typically processes one packet at a time: 
an interrupt handling function takes a single packet from a Network Interface, and 
processes it through a set of functions: fooA calls fooB calls fooC and so on.

 

+---> fooA(packet1) +---> fooB(packet1) +---> fooC(packet1)

+---> fooA(packet2) +---> fooB(packet2) +---> fooC(packet2)

+---> fooA(packet3) +---> fooB(packet3) +---> fooC(packet3)

 

Scalar packet processing is simple, but inefficient in these ways:

•	 When the code path length exceeds the size of the microprocessor’s 
instruction cache (I-cache) thrashing occurs as he microprocessor is 
continually loading new instructions. In this model, each packet incurs an 
identical set of I-cache misses.

•	 The associated deep call stack will also add load-store-unit pressure as stack-
locals fall out of the microprocessor’s Layer 1 Data Cache (D-cache).

Vector Packet Processing

In contrast, a vector packet processing network stack processes multiple packets at 
a time, called ‘vectors of packets’ or simply a ‘vector’. An interrupt handling function 
takes the vector of packets from a Network Interface, and processes the vector 
through a set of functions: fooA calls fooB calls fooC and so on.

https://fd.io/vppproject/vpptech/
https://en.wikipedia.org/wiki/User_space
https://en.wikipedia.org/wiki/Thrashing_(computer_science)


13LFN Networking Whitepaper

+---> fooA([packet1, +---> fooB([packet1, +---> fooC([packet1, +--->

           packet2,         	 packet2,         	packet2,

            ...              	...                  ...

           packet256])      	 packet256])      	packet256])

 

This approach fixes:

•	 The I-cache thrashing problem described above, by amortizing the cost of 
I-cache loads across multiple packets.

•	 The inefficiencies associated with the deep call stack by receiving vectors 
of up to 256 packets at a time from the Network Interface, and processes 
them using a directed graph of node. The graph scheduler invokes one node 
dispatch function at a time, restricting stack depth to a few stack frames.

Further optimizations that this approach enables are pipelining and prefetching  
to minimize read latency on table data and parallelize packet loads needed to 
process packets.

The Packet Processing Graph

The FD.io VPP packet processing pipeline is decomposed into a ‘Packet Processing 
Graph’. This modular approach at the core of FD.io VPP design means that anyone 
can ‘plugin’ new graph nodes. This makes VPP easily extensible and means that 
plugins can be customized for specific purposes.

The Packet Processing Graph creates software:

•	 That is pluggable, easy to understand and extend

•	 Consists of a mature graph node architecture

•	 Allows for control to reorganize the pipeline

•	 That is fast, where plugins are equal citizens



14LFN Networking Whitepaper

A Packet Processing Graph

At runtime, the FD.io VPP platform assembles a vector of packets from RX rings, 
typically up to 256 packets in a single vector. The packet processing graph is then 
applied, node by node (including plugins) to the entire packet vector. The received 
packets typically traverse the packet processing graph nodes in the vector, when the 
network processing represented by each graph node is applied to each packet in 
turn. Graph nodes are small and modular, and loosely coupled. This makes it easy 
to introduce new graph nodes and rewire existing graph nodes.

IPSec

VPP Release 20.01 makes it so IPSec can now be processed in a single solution 
instance—whether appliance, VM, or cloud instance—across multiple cores. This 
makes it safe to run multi-core, because now the Security Associations (SAs) are 
bound to the initial core they were seen on. Learn more here.

Plugins

Plugins are shared libraries and are loaded at runtime by FD.io VPP. It finds plugins 
by searching the plugin path for libraries, and then dynamically loads each one in 
turn on startup. A plugin can introduce new graph nodes or rearrange the packet 

https://www.lfnetworking.org/blog/2020/03/23/how-fd-io-20-01-release-improves-multicore-ipsec/
https://en.wikipedia.org/wiki/Library_(computing)


15LFN Networking Whitepaper

processing graph. You can build a plugin completely independently of the FD.io VPP 
source tree, which means you can treat it as an independent component.

Features

Most FD.io VPP features are written as plugins. The features include everything from 
layer 2 switching to a TCP/IP host stack. For a complete list of features please visit 
FD.io VPP features.

Drivers

FD.io VPP supports and has tested most DPDK drivers (some have not been 
completely tested). FD.io VPP also has some native drivers most notably VMXNET3 
(ESXI), AVF (Intel), vhostuser (QEMU), virtue, tapv2, host-interface and Mellanox. 

Use Cases

Routers, Universal CPE etc. 
FD.io VPP supports entry hardware options from a number of hardware vendors for 
building Customer Premise Equipment devices. FD.io VPP based commercial options 
are available from vendors such as Netgate with TNSR, Cisco with the ASR 9000, 
Carrier Grade Services Engine and many more.

These implementations are accelerated with DPDK Cryptodev for whole platform crypto.

Broadband Network Gateway 
FD.io VPP has a growing list of network traffic management and security features to 
support gateway uses cases such as Broadband Network Gateway.

Load Balancer 
FD.io VPP has a rich set of plugins to enhance its capabilities. Cloud load-balancing 
is just one of a number of feature enhancing plugins available to the end user. For 
example: Google Maglev Implementation, Consistent Hashing, Stateful and stateless 
load balancing, Kube-proxy integration.

Intrusion Prevention 
Fd.io VPP has four different Access Control List technologies; ranging from the 
simple IP-address whitelisting (called COP) to the sophisticated FD.io VPP Classifiers.

More Information

For more information on FD.io VPP please visit FD.io VPP.

Other FD.io projects

There are several other notable FD.io projects. Some of them are listed here.

https://fd.io/vppproject/vppfeatures/
http://www.dpdk.org/
https://fd.io/vppproject/vpptech/


16LFN Networking Whitepaper

Continuous System Integration and Testing (CSIT) 
The Continuous System Integration and Testing (CSIT) project provides functional 
and performance testing for FD.io VPP. This testing is focused on functional and 
performance regressions. For more information on the CSIT project please visit the 
CSIT project pages. For the latest CSIT results please visit the CSIT report.

Hybrid Information-Centric Networking (hiCN) 
Hybrid Information-Centric Networking (hICN) is a network architecture that makes 
use of IPv6 or IPv4 to realize location-independent communications. A scalable stack 
is available based on VPP and a client stack is provided to support any mobile and 
desktop operating system. For more information on the hiCN project please visit the 
hiCN documents.

Universal Deep Packet Inspection (UDPI) 
The Universal Deep Packet Inspection (UDPI) project is a reference framework to 
build a high performance solution for Deep Packet Inspection, integrated with the 
general purpose FD.io VPP stack. It leverages industry regex matching library to 
provide a rich set of features, which can be used in IPS/IDS, Web Firewall and similar 
applications. For more information on UDPI please visit UDPI wiki.

Dual Mode, Multi-protocol, Multi-instance (DMM)  
Dual Mode, Multi-protocol, Multi-instance (DMM) is to implement a transport 
agnostic framework for network applications that can

•	 Work with both user space and kernel space network stacks

•	 Use different network protocol stacks based on their functional and 
performance requirements (QOS)

•	 Work with multiple instances of a transport protocol stack

Use and engage or adopt a new protocol stack dynamically as applicable. For more 
information on DMM please visit the DMM wiki page.

Sweetcomb 
Sweetcomb is a management agent that runs on the same host as a VPP instance,  
and exposes yang models via NETCONF, RESTCONF and gNMI to allow the management  
of VPP instances. Sweetcomb works as a plugin (ELF shared library) for sysrepo 
datastore. For more information on Sweetcomb please the Sweetcomb wiki page.

 

https://docs.fd.io/csit/master/doc/
https://docs.fd.io/csit/master/report/
https://fd.io/docs/hicn/latest/
https://wiki.fd.io/view/UDPI
https://wiki.fd.io/view/DMM
https://wiki.fd.io/view/Sweetcomb


17LFN Networking Whitepaper

3.2 ONAP
Introduction to ONAP

The Open Network Automation Platform (ONAP) project addresses the rising need 
for a common automation platform for telecommunication, cable, and cloud 
service providers—and their solution providers—that enables the automation 
of different lifecycle processes, to deliver differentiated network services on 
demand, profitably and competitively, while leveraging existing investments.

Prior to ONAP, telecommunication network operators had to keep up with the 
scale and cost of manual changes required to implement new service offerings, 
from installing new data center equipment to, in some cases, upgrading customer 
equipment on-premises. Many operators are seeking to exploit Software Defined 
Network (SDN) and Network Function Virtualization (NFV) to improve service 
velocity, simplify equipment interoperability and integration, and reduce overall 
CapEx and OpEx costs. In addition, the current, highly fragmented management 
landscape makes it difficult to monitor and guarantee service-level agreements 
(SLAs).

ONAP is addressing these challenges by developing global and massively scalable 
Virtual Infrastructure Manager (VIM) automation capabilities. These capabilities 
handle not only both physical and virtual network elements, but also multi-
site and multi-VIM deployments. It facilitates service agility by supporting data 
models for rapid service and resource deployment, by providing a common set 
of Northbound REST APIs that are open and interoperable, and by supporting 
model-driven interfaces to the networks. ONAP’s modular and layered nature 
improves interoperability and simplifies integration, allowing it to support 
multiple VNF environments by integrating with multiple VIMs, virtualized network 
function managers (VNFMs), SDN Controllers, and even legacy equipment. ONAP’s 
consolidated VNF requirements enable commercial development of ONAP-
compliant VNFs. This approach allows network and cloud operators to optimize 
their physical and virtual infrastructure for cost and performance; at the same 
time, ONAP’s use of standard models reduces integration and deployment costs of 
heterogeneous equipment, while minimizing management fragmentation.

Scope of ONAP

ONAP enables end user organizations and their network or cloud providers to 
collaboratively instantiate network elements and services in a dynamic, closed 
control loop process, with real-time response to actionable events.



18LFN Networking Whitepaper

ONAP’s primary activities—that is designing, deploying and operating services—are 
provided based on ONAP’s two major frameworks, namely a Design-time framework 
and a Run-time framework:

In order to design, deploy and operate services and assure these dynamic services, 
ONAP activities are built up as follows:

•	 Service design – Service design is built on a robust design framework that 
allows specification of the service in all aspects—modeling the resources and 
relationships that make up the service; specifying the policy rules that guide 
the service behavior; and specifying the applications, analytic, and closed 
control loop events needed for the elastic management of the service.

•	 Service deployment – Service deployment is built on an orchestration and 
control framework that is policy-driven (Service Orchestrator and Controllers) 
to provide automated instantiation of the service when needed and 
managing service demands in an elastic manner.

•	 Service operations – Service operations are built on an analytic framework 
that closely monitors the service behavior during the service lifecycle based 
on the specified design, analytics and policies to enable response as required 
from the control framework, to deal with situations ranging from those that 
require healing to those that require scaling of the resources to elastically 
adjust to demand variations.

ONAP enables product- or service-independent capabilities for design, deployment 
and operation, in accordance with the following foundational principles:

1.	 Ability to dynamically introduce full service lifecycle orchestration (design, 
provisioning, and operation) and service API for new services and 



19LFN Networking Whitepaper

technologies without the need for new platform software releases or without 
affecting operations for the existing services

2.	 Carrier-grade scalability including horizontal scaling (linear scale-out) and 
distribution to support large number of services and large networks

3.	 Metadata-driven and policy-driven architecture to ensure flexible and 
automated ways in which capabilities are used and delivered

4.	 The architecture shall enable the sourcing of best-in-class components

5.	 Common capabilities are ‘developed’ once and ‘used’ many times

6.	 Core capabilities shall support many diverse services and infrastructures

7.	 The architecture shall support elastic scaling as needs grow or shrink

ONAP Functional Architecture

ONAP Architectural Overview Diagram

The Architecture Overview diagram  shows the main ONAP activities in a 
chronological order.



20LFN Networking Whitepaper

Service Design 

ONAP supports Service Design operations, using the TOSCA approach. These service 
design activities are built up of the following subtasks:

1.	 Planning VNF onboarding – checking which VNFs will be necessary for the 
required environment and features

2.	 Creating resources, composing services

3.	 Distributing services:

a.	 TOSCA C-SAR package is stored in the Catalog 

b.	 A new service notification is published

Service Orchestration and Deployment

1.	 Defining which VNFs are necessary for the service

2.	 Defining orchestration steps

3.	 Selecting valid cloud region

4.	 Service orchestration calling cloud APIs to deploy VNFs

a.	 The onboarding and instantiation of VNFs in ONAP is represented 
via the example of onboarding and instantiating a virtual network 
function (VNF), the virtual Firewall (vFirewall). Following the guidelines 
and steps of this example, any other VNF can be similarly onboarded 
and instantiated to ONAP. 

5.	 Controllers applying configuration on VNFs

Service Operations

1.	 Closed Loop design and deployment

2.	 Collecting and evaluating event data

Use Cases

As part of each release, the ONAP community also defines blueprints for key use 
cases, which the user community expects to pursue immediately. Testing these 
blueprints with a variety of open source and commercial network elements during 
the development process provides the ONAP platform developers with real-time 
feedback on in-progress code, and ensures a trusted framework that can be rapidly 



21LFN Networking Whitepaper

adopted by other users of the final release. Current blueprints include Broadband 
Service (BBS), 5G (updated), CCVPN (updated), VoLTE, and vCPE.

Benefits of ONAP

Open Network Automation Platform provides the following benefits:

•	 a common automation platform, which enables common management of 
services and connectivity, while the applications run separately

•	 a unified operating framework for vendor-agnostic, policy-driven service 
design, implementation, analytics and lifecycle management for large-scale 
workloads and services

•	 orchestration for both virtual and physical network functions

•	 both Service and VNF Configuration capability 

•	 the model-driven approach enables ONAP to support services, that are using 
different VNFs, as a common service block

•	 service modelling enables operators to use the same deployment and 
management mechanisms, beside also using the same platform

 ONAP Releases

ONAP is enhanced with numerous features from release to release. Each release is 
named after a global city. A list of past and current releases may be found here.

 
3.3 OPNFV and CNTT
CNTT Introduction

The Common NFVI Telco Taskforce (CNTT) is a LFN and GSMA sponsored taskforce  
focused on minimizing the number of Network Function Virtualisation Infrastructure 
(NFVI) configurations used in Telco deployments. By reducing the variability in the 
NFVIs, network operators expect to reduce testing times and accelerate deployment 
of new capabilities. Network function providers should also appreciate economies of 
scale as fewer variants of the NFVI will be requested by the network operators. The 
set of standardized infrastructure profiles are optimized for common NFV and IT 
workloads as jointly defined by network operators and network function providers 
active in CNTT.  (More information about CNTT can be found in CNTT GitHub).

https://www.onap.org/architecture/blueprints
https://wiki.onap.org/display/DW/Long+Term+Roadmap
https://github.com/cntt-n/CNTT


22LFN Networking Whitepaper

CNTT components include:

•	 Reference Model (RM): describes how the infrastructure is exposed to a 
workload in a standard way.

•	 Reference Architecture (RA): OpenStack based and Kubernetes (K8s)  
based architectures to deliver a conformant infrastructure based on those 
technologies.

•	 Reference Implementation(RI): OpenStack and K8s based NFVI 
implementations used as the basis for testing and validation activities.

•	 Reference Conformance (RC): testharnesses used to verify the conformance 
of vendor implemented infrastructure to the CNTT specifications.

The Scope of CNTT

 
Open Platform for NFV (OPNFV) 
OPNFV is a project and community for Communication Service Providers (CSPs) 
and their supply chains, focused on network transformation and collaboration, to 
continuously improve the efficiency and predictability of consuming and deploying 
NFV infrastructure, VNFs, and CNFs. Iterating through implementations of toolsets, 
automation, verification, conformance, and performance, aligned with normalized 
architectures, and enabling the community to drive down cost and time to revenue 
for network services. OPNFV also collaborates with CNTT to realize the reference 
implementation and reference conformance tests. 



23LFN Networking Whitepaper

Test tools

Functest 
The  Functest project provides comprehensive testing methodology, test suites 
and test cases to test and verify OPNFV Platform functionality that covers the VIM 
and NFVI components.This project uses a “top-down” approach that will start with 
chosen ETSI NFV use-case/s and open source VNFs for the functional testing. This 
approach does the following:

•	 breaks down the use-case into simple operations and functions required

•	 specifies necessary network topologies

•	 develops traffic profiles

•	 develops necessary test traffic

Note: Ideally VNFs will be open source; however, proprietary VNFs may also be used 
as needed.

The project will develop test suites that cover detailed functional test cases, 
test methodologies and platform configurations which will be documented and 
maintained in a repository for use by other OPNFV testing projects and the 
community in general. Developing test suites will also help lay the foundation for a 
test automation framework that in future can be used by the continuous integration 
(CI) project (Octopus). Certain VNF deployment use cases could be automatically 
tested as an optional step of the CI process. The project targets testing of the 
OPNFV platform in a hosted test-bed environment (i.e. using the OPNFV community 
test labs worldwide). Many test projects are integrated into a single, lightweight 
framework for automation (x-testing) that leverages the OPNFV test-api and testdb 
frameworks for publishing results.

VSPerf: Although originally named to emphasize data plane benchmarking and 
performance testing of vSwitch and NFV Infrastructure, VSPerf has expanded its 
scope to multiple types of networking technologies (Kernel Bypass and Cloud-
Native) and allows deployment in multiple scenarios (such as containers and 
OpenStack). VSperf can utilize several different Traffic Generators and Receivers 
for testing, including several popular hardware and software-based systems. The 
VSPerf tool has many modes of operation, including the “traffic-generator-only” 
mode, where any virtual network manager sets up the path to be tested, and VSPerf 
automates the traffic generation and results reporting. VSperf is compliant with ETSI 
NFV TST009 and IETF RFC 2544.

https://wiki.opnfv.org/traffic_profile_management


24LFN Networking Whitepaper

StorPerf: A key challenge to measuring disk performance is to know when it is 
performing at a consistent and repeatable level of performance. Initial writes 
to a volume can perform poorly due to block allocation, and reads can appear 
instantaneous when reading empty blocks. The Storage Network Industry Association 
(SNIA) has developed methods which enable manufacturers to set, and customers 
to compare, the performance specifications of Solid State Storage devices. StorPerf 
applies this methodology to virtual and physical storage services to provide a high 
level of confidence in the performance metrics in the shortest reasonable time.

NFVBench: NFVbench is a lightweight end-to-end dataplane benchmarking 
framework project. It includes traffic generator(s) and measures a number of packet 
performance related metrics.

Lab as a Service (LaaS): LaaS is a “bare-metal cloud” hosting resource for the LFN 
community. This comprises compute and network resources that are installed and 
configured on demand for the developers through an online web portal. The highly 
configurable nature of LaaS means that users can reserve a Pharos compliant 
or CNTT compliant POD. Resources are booked and scheduled in blocks of time, 
ensuring individual projects and users do not monopolize resources. By providing a 
lab environment to developers, LaaS enables more testing, faster development, and 
better collaboration between LFN projects.

CI/CD for Continuous Deployment and Testing of NFVI Stacks

OPNFV Lab Infrastructure 
OPNFV leverages globally distributed community labs provided by LFN member 
organizations. These labs are used by both developers of OPNFV projects as well as 
the extensive CI/CD tooling infrastructure to continuously deploy and test OPNFV 
reference stacks. In order to ensure a consistent environment across different labs, 
OPNFV community labs follow a lab specification (the Pharos spec) defining a high- 
level hardware configuration and network topology. In the context of CNTT reference 
implementations, all updates will be added to the Pharos spec in future releases.

Note: OPNFV Feature projects are working towards closing feature gaps in 
upstream open source communities providing the components for building full NFVI 
stacks, and OPNFV Deployment tools include Airship and Fuel / MCP.



25LFN Networking Whitepaper

The Scope of OPNFV

CNTT and OPNFV

Relation of CNTT OpenStack RI and OPNFV



26LFN Networking Whitepaper

3.4 OpenDaylight
Introduction

OpenDaylight (ODL) is a modular open platform for customizing and automating 
networks of any size and scale. The OpenDaylight project arose out of the SDN 
movement, with a clear focus on network programmability. It was designed from 
the outset as a foundation for commercial solutions that address a variety of use 
cases in existing network environments.

OpenDaylight Architecture

Model-Driven 
The core of the OpenDaylight platform is the Model-Driven Service Abstraction Layer 
(MD-SAL). In OpenDaylight, underlying network devices and network applications 
are all represented as objects, or models, whose interactions are processed within 
the SAL.

OpenDaylight Architectural View

The SAL is a data exchange and adaptation mechanism between YANG models 
representing network devices and applications. The YANG models provide 
generalized descriptions of a device or application’s capabilities without requiring 
either to know the specific implementation details of the other. Within the SAL, 
models are simply defined by their respective roles in a given interaction. A 



27LFN Networking Whitepaper

“producer” model implements an API and provides the API’s data; a “consumer” 
model uses the API and consumes the API’s data. While ‘northbound’ and 
‘southbound’ provide a network engineer’s view of the SAL, ‘consumer’ and 
‘producer’ are more accurate descriptions of interactions within the SAL. For 
example, protocol plugin and its associated model can either be a producer of 
information about the underlying network, or a consumer of application instructions 
it receives via the SAL.

The SAL matches producers and consumers from its data stores and exchanges 
information. A consumer can find a provider that it’s interested in. A producer can 
generate notifications; a consumer can receive notifications and issue RPCs to get 
data from providers. A producer can insert data into SAL’s storage; a consumer can 
read data from SAL’s storage. A producer implements an API and provides the API’s 
data; a consumer uses the API and consumes the API’s data.

Modular and Multiprotocol 
The ODL platform is designed to allow downstream users and solution providers 
maximum flexibility in building a controller to fit their needs. The modular design of 
the ODL platform allows anyone in the ODL ecosystem to leverage services created 
by others; to write and incorporate their own; and to share their work with others. 
ODL includes support for the broadest set of protocols in any SDN platform—
OpenFlow, OVSDB, NETCONF, BGP and many more—that improve programmability 
of modern networks and solve a range of user needs.

Southbound protocols and control plane services, anchored by the MD-SAL, 
can be individually selected or written, and packaged together according to the 
requirements of a given use case. A controller package is built around four key 
components (odlparent, controller, MD-SAL and yangtools). To this, the solution 
developer adds a relevant group of southbound protocols plugins, most or all of 
the standard control plane functions, and some select number of embedded and 
external controller applications, managed by policy.

Each of these components is isolated as a Karaf feature, to ensure that new work 
doesn’t interfere with mature, tested code. OpenDaylight uses OSGi and Maven to 
build a package that manages these Karaf features and their interactions.

This modular framework allows developers and users to:

•	 Only install the protocols and services they need

•	 Combine multiple services and protocols to solve more complex problems as 
needs arise



28LFN Networking Whitepaper

•	 Incrementally and collaboratively evolve the capabilities of the open source 
platform

•	 Quickly develop custom, value-added features for highly specialized use 
cases, leveraging a common platform shared across the industry.

Bottomline about the Architecture 
The modularity and flexibility of OpenDaylight allows end users to select whichever 
features matter to them and to create controllers that meet their individual needs.

Use Cases

The OpenDaylight platform (ODL) provides a flexible common platform 
underpinning a wide variety of applications and use cases. Some of the most 
common use cases are mentioned here. 

ONAP 
Leveraging the common code base provided by Common Controller Software 
Development Kit (CCSDK), ONAP provides two application level configuration and 
lifecycle management controller modules called ONAP SDN-C and ONAP App-C. 
These controllers manage the state of a single Resource (Network or Application). 
Both provide similar services (application level configuration using NetConf, Chef, 
Ansible, RestConf, etc.) and life cycle management functions (e.g. stop, resume, 
health check, etc.). The ONAP SDN-C has been used mainly for Layer1-3 network 
elements and the ONAP App-C is being used for Layer 4-7 network functions. The 
ONAP SDN-C and the ONAP App-C components are extended from OpenDaylight 
controller framework.

The ONAP SDN-C leverages the model driven architecture in OpenDaylight. As 
illustrated, the ONAP SDN-C leverages the OpenDaylight framework composed 
of API handlers, operational and configuration trees, and network adapters for 
network device configurations. Within this framework, the ONAP Service Logic 
Interpreter (SLI) newly introduced provides an extensible scripting language to 
express service logic through the Directed Graph builder based on Node-Red. The 
service logic is written how network service parameters (e.g. L3VPN) given from 
the northbound API are mapped onto network device configuration parameters 
consumed by external SDN controllers attaching to the ONAP SDN-C.



29LFN Networking Whitepaper

How AT&T Uses OpenDaylight

External SDN controller 
External SDN controller interfaces with the southbound interface of the ONAP 
SDN-C and is used to manage the Layer1-3 network devices in each network 
domain. Over the interface, the network configuration parameters extracted from 
the service logic are passed to the external SDN controllers. An OpenDaylight as an 
external SDN controller supports parameters for L3VPN, L2VPN, PCEP, NETCONF 
and more. The external OpenDaylight controller deploys the given configurations 
into the network devices.

Network Virtualization for Cloud and NFV  
OpenDaylight NetVirt App can be used to provide network virtualization (overlay 
connectivity) inside and between data centers for Cloud SDN use case:

•	 VxLAN within the data center

•	 L3 VPN across data centers

The components used to provide Network Virtualization is shown in the diagram below:



30LFN Networking Whitepaper

Network virtualization components

Network Abstraction 
OpenDaylight can expose Network Services API for northbound applications for 
network automation in a multi-vendor network.

These are just a few of the common use cases for OpenDaylight. The platform can  
and continues to be tailored to several other industry use cases.  

3.5 OpenSwitch (OPX)
Overview

OpenSwitch (OPX)—an open source network operating system (NOS) and 
ecosystem—is an early adopter of emerging concepts and technologies (hardware 
and software disaggregation, use of open source, SDN, NFV and DevOps) which 
disrupt how networks and networking equipment are built and operated. Designed 
using a standard Debian Linux distribution with an unmodified Linux kernel, OPX 
provides a programmable high-level abstraction of network components, such 
as switching ASICs (Network Processors) and optical transceivers. Architected 
as a scalable, cloud-ready, agile solution, the open source OpenSwitch software 
implements a flexible infrastructure to enable both network operators and vendors 
to rapidly onboard open source networking OS applications. OPX provides a YANG 
based programmatic interface, that can be accessed using Python, thus providing an 
environment well-suited for DevOps.

https://github.com/open-switch/opx-docs/wiki
https://en.wikipedia.org/wiki/Network_operating_system


31LFN Networking Whitepaper

OPX Features

OPX provides an abstraction of hardware network devices in a Linux OS 
environment. It has been designed from its inception in order to support the newest 
technologies and concepts in the networking industry:

•	 In OPX, software is disaggregated from hardware, and software components 
are disaggregated as well.

•	 OPX can be deployed on diverse networking hardware—only the low-
level software layers SAI (Switch Abstraction Interface) and System 
Device Interface (SDI) are hardware specific and may need to be 
adapted. A minimum requirement is for hardware to be built around 
a standard ASIC, with Layer 2 switching, Layer 3 routing, ACL and QoS 
functionality.

•	 Makes extensive use of standard open source software, for instance:

•	 ONIE installer

•	 Linux Debian distribution with an unmodified Linux kernel 

•	 Switch Abstraction Interface (SAI) defined in the Open Compute 
Project for interfacing with the networking ASIC.

•	 Integrates Linux native APIs with networking ASIC functionality. In 
OpenSwitch, networking features are also accessible using the Linux 
standard API’s (“netlink”). Thus standard open source network packages 
(such as FRR) can be installed and supported in binary format.

•	 OPX supports containers and NFV. The Docker container environment 
(Docker CE), or any other Linux container environment, can be installed 
on any OPX device in this environment, users can deploy their own 
containerized virtualized network functions (VNF).

•	 Supports programmability, automation and DevOps:

•	 A robust and flexible programmatic interface—namely the Control 
Plane Services (CPS). The API is defined using YANG models and is 
accessible through Python (and C/C++). 

•	 The availability of a programmatic interface (CPS API/YANG models) 
allows integration with external orchestrators and SDN controllers

•	 Provides a rich set of networking features including full access to the 
networking ASIC ACL and QoS functionality using CPS API/YANG models.



32LFN Networking Whitepaper

OPX provides support for:

•	 L2 protocols: LLDP, LACP (link aggregation interfaces), 802.1q (VLAN 
interfaces), STP and bridge interfaces

•	 L3 protocols (e.g. BGP)

•	 ACL and QoS network functions (through CPS / YANG API’s)

•	 Instrumentation: sFlow, telemetry

•	 Orchestration and management

Programmability and Automation 

OPX supports a rich ecosystem for automated deployment, for instance:

•	 Ansible – various modules are already defined for OPX

•	 Zero-touch provisioning (ZTP) allows provisioning of OPX ONIE-enabled 
devices automatically, without manual intervention

•	 Puppet

North-Bound Programmatic Interfaces 
The OPX CPS programmatic interface is defined using YANG models, and in 
combination with Python, provides support for programming the network 
functionality, automation and DevOps. While the CPS API is the native OpenSwitch 
API, a REST API can be added as well, by mapping REST requests to CPS.

In addition, a set of OPX specific commands are available and can be invoked from a 
Linux shell (e.g. display the current software version, hardware inventory etc.).

OPX Architecture

The figure below illustrates the main areas of the OPX architecture:



33LFN Networking Whitepaper

OPX Architecture

OPX Base 
The key components of OPX Base are:

NAS – Network Adaptation Service

•	 Manages the high level abstraction of the switching ASIC

•	 NAS manages the middle-ware that associates physical ports to Linux interfaces, 
and adapts Linux native API calls (e.g. netlink) to the switching ASIC

PAS – Platform Adaptation Service

•	 A higher-level abstraction and aggregation of the functionality provided by 
the SDI component

CPS – Control Plane Service 

•	 Object centric framework

•	 Mediates between application software components and the platform

•	 Provides a pub/sub model and set/get/delete/create

•	 Provides the framework for defining YANG modeled APIs - with Python and 
C/C++ bindings. In OPX, YANG models are used with an efficient CPS binary 
encoding.



34LFN Networking Whitepaper

SAI – Switch Abstraction Interface

•	 SAI API is an open interface that abstracts vendor-specific switching ASIC 
behavior

SDI – System Device Interface

•	 An API that provides a low level abstraction of platform specific hardware 
devices (e.g. fans, power supplies, sensors)

OPX Applications

A variety of open source or vendor specific applications have been tested and can 
be deployed with OPX:

•	 FRR - BGP

•	 AAA: TACACS+, RADIUS

•	 Telemetry: Broadview, Packet Trakker 

•	 Inocybe OpenDaylight integration

•	 NetSNMP

•	 Puppet

•	 Chef

It should be noted that these applications are not pre-installed with OPX. In a 
"disaggregated" model, users select applications to install them based on the 
requirements of a given network deployment.

In general, since OPX is based on Linux Debian distribution with an unmodified kernel, 
any Debian binary application can be installed and executed on OpenSwitch devices.

Hardware Simulation

OPX software supports hardware virtualization (or simulation). Software simulation 
of basic hardware functionality is also provided (simulation specific SAI and SDI 
components), and the higher layer software functionality can be developed and 
tested on generic PC/server hardware. OPX hardware simulation can be executed 
under Virtual Box, GNS3 / QEmu etc.



35LFN Networking Whitepaper

3.6 PNDA
Introduction

Innovation in the big data space is extremely rapid, but composing multitudes of 
technologies together into an end-to-end solution can be extremely complex and 
time-consuming. The vision of PNDA is to remove this complexity, and allow you 
to focus on your solution instead. PNDA is an integrated big data platform for the 
networking world, curated from the best of the Hadoop ecosystem. PNDA brings 
together a number of open source technologies to provide a simple, scalable, open 
big data analytics platform that is capable of storing and processing data from 
modern large-scale networks. It supports a range of applications for networks and 
services covering both the Operational Intelligence (OSS) and Business intelligence 
(BSS) domains. PNDA also includes components that aid in the operational 
management and application development for the platform itself.

The PNDA project aims to deliver a fully cloud native PNDA data platform on 
Kubernetes. The current focus has been migrating to a containerized and helm 
orchestrated set of components, which has simplified PNDA development and 
deployment as well as lowered project maintenance costs. The goal of the Cloud-
native PNDA project is to deliver the PNDA big data experience on Kubernetes in the 
first half of 2020.

PNDA provides the tools and capabilities to:

•	 Aggregate data like logs, metrics, and network telemetry

•	 Scale up to consume millions of messages per second

•	 Efficiently distribute data with publish and subscribe models

•	 Process bulk data in batches, or streaming data in real time

•	 Manage lifecycle of applications that process and analyze data

•	 Let users explore data with interactive notebooks



36LFN Networking Whitepaper

PNDA Architecture

PNDA Operational View

The PNDA dashboard provides an overview of the health of the PNDA components 
and all applications running on the PNDA platform. The health report includes 
active data path testing that verifies successful ingress, storage, query and batch 
consumption of live data.



37LFN Networking Whitepaper

 
3.7 SNAS
Streaming Network Analytics System (project SNAS) is a framework to collect, track 
and access tens of millions of routing objects (routers, peers, prefixes) in real time.

SNAS extracts data from BGP routers using a BGP Monitoring Protocol (BMP) 
interface. The data is parsed and made available to consumers through a Kafka 
message bus. Consumers applications in turn can perform further analytics and 
visualization of the topology data.

The project is currently be re-architectured by a team at UCSD with more informa-
tion expected in 2H2020. Learn more. 

https://snas.io


38LFN Networking Whitepaper

3.8 Tungsten Fabric
Introduction

Tungsten Fabric is a software-defined network and security fabric built for rapid 
deployment at scale. It provides a highly scalable virtual networking and security 
platform that works with a variety of virtual machine and container orchestrators, 
integrating them with physical networking and compute infrastructure. It is 
designed to support multi-tenant networks in the largest environments while 
supporting multiple orchestrators simultaneously.

Tungsten Fabric enables usage of the same controller and forwarding components 
for every deployment, providing a consistent interface for managing connectivity 
in all the environments it supports, and is able to provide seamless connectivity 
between workloads managed by different orchestrators, whether virtual machines 
or containers, and to destinations in external networks.

Architecture Overview 
Tungsten Fabric controller integrates with cloud management systems such as 
OpenStack or Kubernetes. Its function is to ensure that when a virtual machine (VM) 
or container is created, it is provided with network connectivity according to the 
network and security policies specified in the controller or orchestrator.

Tungsten Fabric consists of two primary pieces of software:

•	 Tungsten Fabric Controller – a set of software services that maintains a 
model of networks and network policies, typically running on several servers 
for high availability

•	 Tungsten Fabric vRouter – installed in each host that runs workloads (virtual 
machines or containers), the vRouter performs packet forwarding and 
enforces network and security policies



39LFN Networking Whitepaper

Technologies Used

Tungsten Fabric uses networking industry standards such as BGP EVPN control 
plane and VXLAN, MPLSoGRE and MPLSoUDP overlays to seamlessly connect 
workloads in different orchestrator domains. For example, virtual machines 
managed by VMware vCenter and containers managed by Kubernetes.

Tungsten Fabric supports four modes of datapath operation:

Tungsten Fabric connects virtual networks to physical networks:

•	 Using gateway routers with BGP peering

•	 Using ToR with OVSDB



40LFN Networking Whitepaper

•	 Using ToR managed with Netconf and BGP-EVPN peering

•	 Directly through datacenter underlay network (Provider networks)

Key Features

Tungsten Fabric manages and implements virtual networking in cloud environments 
using OpenStack and Kubernetes orchestrators, where it uses overlay networks 
between vRouters that run on each host. It is built on proven, standards-based 
networking technologies that today support the wide-area networks of the world’s 
major service providers, but repurposed to work with virtualized workloads and 
cloud automation in data centers that can range from large scale enterprise data 
centers to much smaller telco POPs. It provides many enhanced features over the 
native networking implementations of orchestrators, including:

•	 Highly scalable, multi-tenant networking

•	 Multi-tenant IP address management

•	 DHCP, ARP proxies to avoid flooding into networks

•	 Efficient edge replication for broadcast and multicast traffic

•	 Local, per-tenant DNS resolution

•	 Distributed firewall with access control lists

•	 Application-based security policies based on tags

•	 Distributed load balancing across hosts

•	 Network address translation (1:1 floating IPs and distributed SNAT)

•	 Service chaining with virtual network functions

•	 Dual stack IPv4 and IPv6

•	 BGP peering with gateway routers

•	 BGP as a Service (BGPaaS) for distribution of routes between privately 
managed customer networks and service provider networks

•	 Integration with VMware orchestration stack

 



41LFN Networking Whitepaper

4. LFN Integration Points
As highlighted in the previous chapters, LFN projects are designed to be part of end-
to-end modern networks. As such, many LFN projects have integration points with 
other LFN projects, as well as external open source projects. Here is a look at the 
LFN projects (highlighted in green) in the open source networking stack.

2020 LF Networking / SDO Landscape

This section aims to present an end-to-end use case example where the LFN 
projects work in harmony to deliver a "service" that includes VNFs, connectivity and 
analytics-powered assurance as shown in the following picture:

CI/CD
Verification &
Certification

Delivery and assurance (automation) Big Data Analytics
with ONAP DCAE

Real Time Analytics

Underlay network

External
connectivity

Overlay network

Host 3

Host 2

Host 1

VNF
Requirements

VNF1

VNF2
Physical
Network

Overlay
Network

Network
acceleration

(to NFVI) (to VNFs) (to ODL, TF)

Phase 0

Phase 1

Phase 2



42LFN Networking Whitepaper

In this example, 2 VNFs (for the sake of simplicity, provided by the same vendor) 
must be deployed on top of an NFVI (e.g., OpenStack), be interconnected and 
provided with external connectivity to the Internet. Moreover, the VNFs require 
network acceleration and the whole service must be assured using Analytics driven 
closed loop operations.

Using the 8 LFN projects, an end user (e.g., a carrier) can realize the above as follows:

Phase 0 - Building the network infrastructure and preparing the network 
functions

Following the CNTT Reference model, the operator decides which CNTT OpenStack 
based Reference Architecture may best suit its needs. This is followed by picking 
a set of infrastructure components that fit a CNTT Reference Implementation of 
choice. The infrastructure is built using the deployment tolls and CI/CD provided by 
OPNFV. Next, the infrastructure is certified using the CNTT RC and OPNFV CVC.

Several LFN projects may be used as infrastructure building blocks for addressing 
the needs of network functions, such as high throughput/low latency networking:

•	 OpenDaylight and Tungsten Fabric can be used as 3rd party SDN solutions 
to provide network connectivity.

•	 Open Switch (OPX) can be used to configure the physical (underlay) network 
that connects the physical hosts used to deploy OpenStack The network 
topology may follow the leaf and spine topology as a physical infrastructure 
is recommended in the requirements of physical infrastructure of the CNTT 
Reference Architecture.

•	 FD.io provides data plane network acceleration through its Vector Packet 
Processor (VPP). 

VNFs are prepared for deployment and inclusion in network services:

•	 An NFV vendor pre-validates and certifies a couple of VNFs (i.e., VNF1 and 
VNF2) through the OPNFV Verification Program (OVP).

•	 The NFV vendor ensures that the VNF complies with the ONAP VNF 
requirements. This will enable ONAP to properly control the lifecycle of the 
VNF as part of a network service.

Phase 1 - Network service design and deployment

At design time, ONAP is used to onboard the VNFs that are compliant with the ONAP 
requirements and pre-certified using the OPNFV CVC . Those compliant resources 

https://cntt-n.github.io/CNTT/doc/ref_arch/openstack/
https://cntt-n.github.io/CNTT/doc/ref_arch/openstack/
https://cntt-n.github.io/CNTT/doc/ref_arch/openstack/chapters/chapter03.html#3.2.5
https://cntt-n.github.io/CNTT/doc/ref_arch/openstack/chapters/chapter03.html#3.4.2
https://onap.readthedocs.io/en/latest/guides/onap-provider/index.html
https://onap.readthedocs.io/en/latest/guides/onap-provider/index.html


43LFN Networking Whitepaper

can later be used to design any E2E service using ONAP Service Design and Creation 
(ONAP SDC).

At runtime, ONAP orchestrates the deployment of the whole service either through 
ONAP internal functions/components or leveraging the capability to interwork with 
3rd party components.

In particular, ONAP Service Orchestrator (ONAP SO) instructs the underlying ONAP 
functions in order to deploy all of the elements that compose the end-to-end service.

ONAP deploys the VNFs in the available NFVI and the overlay network connecting 
them using ONAP SDN-C. SDN-C uses its OpenDaylight based architecture to 
model and deploy the L1-L3 network. Next the ONAP APP-C is used to configure 
the network functions and their L4-L7 functionality. This is also done leveraging the 
OpenDaylight architecture.

OpenDaylight may be used to stitch together the physical switch fabric of the 
infrastructure with the virtual networking in the NFVI (e.g. OpenStack Neutron). 
Through the OpenDaylight Northbound Interface, ONAP-SDNC is able to instruct 
the OpenDaylight SDN controller for underlay network management. The 
southbound interfaces (e.g. NETCONF, etc) support interactions with OpenSwitch 
running on the leaf and spine fabric switches in the NFVI.

By leveraging its SDN-C southbound interface, ONAP instructs Tungsten Fabric 
to create the external connectivity that will enable customers to "consume" the 
services offered by the VNFs. The predefined policies that will control the lifecycle of 
the network service are designed using the ONAP design-time components such as 
SDC and CLAMP.

Phase 2 - Network service operation

Naturally, being a Network Automation Platform, ONAP plays a central role in 
the delivery and assurance of the service. The VNFs report their performance and 
fault data to the ONAP DCAE using the VNF Event Streaming (VES) interface. This 
information is constantly analyzed and may trigger predefined policies that were 
created at design-time. The policies are used to invoke closed loop automation 
actions such as scaling and healing of service components in order to assure the 
required SLA and respond to changing demands and network conditions.

Finally, closed loop operations may be further enriched by combining LFN Real Time 
Analytics capabilities of SNAS.io and the synergies offered by ONAP and PNDA.io. 
Information about changes in the network topology gathered by SNAS can be used 
to trigger ONAP policies that will spawn more instances of packet routing network 



44LFN Networking Whitepaper

functions. The data analytics capabilities of PNDA may be used to trigger ONAP 
policies based on data streams produced by all layers of the infrastructure as well 
as the network functions. ONAP may respond to an infrastructure issue detected 
by PNDA by migrating VNFs from an affected location to one that is healthy and has 
the available resources. 

 



45LFN Networking Whitepaper

5. Conclusion, Call for Action, 
and Further Reading
The use cases and integrations described in this whitepaper are just a few of many 
possible synergies. LFN projects may be integrated with one another in many other 
ways. They may also become part of a larger solution, involving other open source 
projects and commercial products. The set of projects under the LFN should not be 
considered a monolithic bunch. Any network designer may pick just one, several, 
or all the projects when designing their network. The use of well defined interfaces 
makes it easier to integrate the projects with any other system.

The LFN community is eager to learn about new use cases that might stem from 
reading this document. We encourage readers who come up with ideas for 
use cases to share them with the community using the LFN Technical Advisory 
Committee (TAC) mailing list at:

https://lists.lfnetworking.org/g/lfn-tac

The best way to learn about an open source community is to participate and 
contribute. Learn about getting started on the LFN website. For further reading, 
please refer to the Wikis and documentation links below:

LF Networking
Wiki: https://wiki.lfnetworking.org/

ONAP
Wiki: https://docs.onap.org/https://wiki.onap.org/

Docs: https://docs.onap.org/

FD.io
Wiki: https://wiki.fd.io/view/Main_Page

Docs: https://fd.io/documentation/ 

https://lists.lfnetworking.org/g/lfn-tac
https://www.lfnetworking.org/about/getting-started/
https://wiki.lfnetworking.org/
https://docs.onap.org/https://wiki.onap.org/
https://docs.onap.org/
https://wiki.fd.io/view/Main_Page
https://fd.io/documentation/


46LFN Networking Whitepaper

OpenDaylight
Wiki: https://wiki.lfnetworking.org/display/ODL/

Docs: https://docs.opendaylight.org

OPNFV/CNTT
OPNFV Wiki: https://wiki.opnfv.org/

OPNFV Docs: https://docs.opnfv.org

CNTT Wiki: https://wiki.lfnetworking.org/display/LN/Common+NFVI+Telco+Task+ 
Force+-+CNTT

CNTT Docs: https://github.com/cntt-n/CNTT

OpenSwitch (OPX)
Wiki / Docs: https://github.com/open-switch/opx-docs/wiki

Docs: https://github.com/open-switch/opx-docs/wiki

PNDA
Wiki: https://wiki.pnda.io/

Docs: http://pnda.io/guide

SNAS
Docs: https://www.snas.io/docs

Tungsten Fabric
Wiki: https://wiki.tungsten.io/

Docs: https://tungstenfabric.github.io/website/

 

 

 

https://wiki.lfnetworking.org/display/ODL/
https://docs.opendaylight.org
https://wiki.opnfv.org/
https://docs.opnfv.org
https://wiki.lfnetworking.org/display/LN/Common+NFVI+Telco+Task+Force+-+CNTT
https://wiki.lfnetworking.org/display/LN/Common+NFVI+Telco+Task+Force+-+CNTT
https://github.com/cntt-n/CNTT
https://github.com/open-switch/opx-docs/wiki
https://github.com/open-switch/opx-docs/wiki
https://wiki.pnda.io/
http://pnda.io/guide
https://www.snas.io/docs
https://wiki.tungsten.io/
https://tungstenfabric.github.io/website/


47LFN Networking Whitepaper

6. Glossary
 

Term Description
API Application Programmable Interface
BSS Business Support System
CI/CD Continuous Integration/Continuous Deployment
CNF Cloud-native Network Function
CP Control plane
CSP Communications Service Provider
CT Communication Technology
DP Data Plane
IT Information Technology
K8S Kubernetes
LCM Life Cycle Management
LFN LF Networking umbrella project
NEP Network Equipment Provider
NETCONF Network Configuration Protocol
NF Network Function
NFVi (or NFVI) Network Function Virtualization Infrastructure
O&M Operations and Maintenance
OSS Operations Support System
SDN Software Defined Networking
SDO Standards Definition Organization
TOSCA Topology and Orchestration Specification for Cloud Applications 

(OASIS standard)
VIM Virtual Infrastructure Manager
VM Virtual Machine
VNF Virtual Network Function
YANG Yet Another Next generation (NETCONF modeling language)




