
ONAP: Streamlining
the process

Magnus Buhrgard, Byung-Woo Jun - Ericsson

June 2023

• Linux Foundation meetings involve participation by industry competitors, and it is the

intention of the Linux Foundation to conduct all of its activities in accordance with applicable

antitrust and competition laws. It is therefore extremely important that attendees adhere to

meeting agendas, and be aware of, and not participate in, any activities that are prohibited

under applicable US state, federal or foreign antitrust and competition laws.

• Examples of types of actions that are prohibited at Linux Foundation meetings and in

connection with Linux Foundation activities are described in the Linux Foundation Antitrust

Policy available at http://www.linuxfoundation.org/antitrustpolicy. If you have questions

about these matters, please contact your company counsel, or if you are a member of the

Linux Foundation, feel free to contact Andrew Updegrove of the firm of Gesmer Updegrove

LLP, which provides legal counsel to the Linux Foundation.

Anti-Trust Policy Notice

Workshop on streamlining the ONAP process based on the new mission statement

• New mission statement

• Short recap

• Right size the ambition level

• Inspiration from other open-source projects

• Some suggestions

• Discussion

Agenda

ONAP is an open-source project containing a set of autonomous components for orchestration,
management, and automation of network and edge computing services for network operators, cloud
providers, and enterprises.

The components are designed by self-organizing projects, evolving in dialogue with code
consumers, as well as adhering to ONAP’s global requirements and best practices. To increase
the value of the components to the consumers, use cases are identified to guide the bundling of
components into packages and integrating components for proof-of-concept demonstrations.

ONAP is also an industry collaboration to define, describe and evolve a reference architecture for
real-time, policy-driven orchestration, management, and automation of physical, virtual, and cloud-
native network functions.

New ONAP Mission Statement

London Architecture Overview

✓ ONAP stakeholders are thinking about connecting ONAP,
ORAN, Nephio, EMCO, and other communities for larger
objectives.

✓ Reuse of selected ONAP functions

✓ Functional delegations

✓ Under these circumstances, ONAP streamlining is more
desirable.

ONAP benefits to the industry

• ONAP as a platform has shown e2e network automation
to the industry.

• Operators, vendors and enterprises have learned how
service/network automation (modeling, orchestration,
policy-based closed loop, optimization…) works on VM
and Cloud-Native environments for VNF, PNF, CNF, NS,
Network/RAN Slicing and e2e service thru ONAP.

• Now, the operators, vendors and enterprises want to
select and apply ONAP functions to their portfolio. No
one needs to take ONAP as a whole.

• In ONAP, there are numerous valuable use cases, that
leverage and coordinate clusters of ONAP component
functions (e.g., SDC, SO, A&AI, DCAE, Policy, SDNC,
SDNR, CPS, CDS…) to achieve objectives, such as:

• E2E Network Slicing

• RAN slicing

• Closed Loop

• ETSI-based NS & VNF orchestration

• Helm-based CNF orchestration

• ASD-based (including Helm) CNF orchestration

Great accomplishments!

• Our goal is to continue to support those use cases
efficiently for use in commercial production environments
and portfolios.

• We expect the industry wants to pick and choose desired
ONAP component functions, swap some of the ONAP
functions, and integrate those functions into their portfolios
seamlessly, without bringing in a platform.

• ONAP streamlining, which drives individual components
and clusters of components guided by use cases, will
enable the flexible and dynamic function adoption by the
industry.

• Individual components (run by self organizing teams)
• The teams dictate their own processes and timelines

• Centers of excellence

• Flexible dialogue with users

• Continuous development and responsive deliverables

What is consumable in ONAP?

• Individual components (run by self organizing teams)
• The teams dictate their own processes and timelines

• Centers of excellence

• Flexible dialogue with users

• Continuous development and responsive deliverables

• Cluster of components guided by use cases
• Bringing greater value than individual components

• Useful in marketing, Proof-of-Concept

What is consumable in ONAP?

• Individual components (run by self organizing teams)
• The teams dictate their own processes and timelines

• Centers of excellence

• Flexible dialogue with users

• Continuous development and responsive deliverables

• Cluster of components guided by use cases
• Bringing greater value than individual components

• Useful in marketing, Proof-of-Concept

• Platform
• No commercial uptake

• No smooth upgrade

• Sets expectations for a scope way beyond what can be expected from a “normal” open-source
community

• Based on a corporate development mindset

ONAP needs to get more agile and better at managing expectations

What is consumable in ONAP?

• The individual component teams set the expectations

• Proposals needs to backed up with secured development resources

• Smooth interoperability is a benefit - not a default

• Documentation is best-effort – complemented by contact information to the developer network

• Governance → Special Interest Groups + Support

Right size the ambition level

• Cloud Native Computing Foundation (cncf.io)

• CD Foundation

Inspiration from other projects

https://www.cncf.io/
https://cd.foundation/

CNCF graduated projects

CNCF outreach

CNCF TAGs

Technical Advisory Groups

The TOC has approved the formation of TAGs. Currently, the following Technical advisory Groups are active:

• TAG-Security
• TAG-Storage
• TAG-App-Delivery
• TAG-Network
• TAG-Runtime
• TAG Contributor Strategy
• TAG Observability
• TAG Environmental Sustainability

https://github.com/cncf/tag-security
https://github.com/cncf/tag-storage
https://github.com/cncf/tag-app-delivery
https://github.com/cncf/tag-network
https://github.com/cncf/tag-runtime
https://github.com/cncf/tag-contributor-strategy
https://github.com/cncf/tag-observability
https://github.com/cncf/tag-env-sustainability

LF Networking - proposal

LF Networking Projects

by

DMaaP

SO
SDN-C

A&AI

PortalNG

DCAE

UC UI

CCSDK

SDC

VFC/NFVO

• ONAP components are designed for ONAP-specific consumption.

• Instead of a component being graduated, an ONAP component becomes obsolete or
unmaintained if ONAP does not have use cases for it.

• Some ONAP component-specific features tend to be ignored if they are not used by other ONAP
components.

• ONAP component functions should be used by not only ONAP but also non-ONAP.

• Component design should be generic and extensible in a way that would enable it to be used
in non-ONAP

• If components are more generally applicable, there is the potential to gain more traction.

• Component dependencies and couplings to other ONAP components are in an ONAP-specific way.

• Those dependencies and couplings could be both syntactic and semantic.

• Numerous intra-ONAP component interfaces and communications are ONAP-specific.

• Some limited APIs standardization efforts are in place, such ETSI MANO APIs, ASD, 3GPP...

• Making each ONAP component ‘stand-alone’ will highlight to potential users that they can take a
single component, without getting involved in the whole of ONAP.

ONAP component obstacles,
observations & challenges

• Deviating from standards makes integration with other systems problematic, especially for non-ONAP.

• Aligning with standards where possible should be global requirements.

• If there must be a deviation, that can be done in an extensible way that enables the standard-
based approach

• Component Helm charts in OOM may need to be re-written to build/deploy a component individually.

• CI build/integration of a vendor/operator could be less compatible with ONAP one.

• OOM is not used by some vendor/operators.

• In some cases, a vendor maintains a completely different set of Helm charts for ONAP
components.

• Vendor/operator-specific security and logging requirements could be different. It causes integration
issues. The current security based on Service-Mesh, Ingress and Keycloak should be maintained.

• Timelines and cadence of the ONAP release are inflexible for accommodating different release
strategies.

• Cannot create a ‘Release’ in JIRA for the component releases

• Branching strategies are not aligned with ONAP CMO (Current Mod of Operation)

• Resulting in an artificial split in functionality between releases

ONAP component obstacles,
observations & challenges

ONAP component streamlining target

• Modularity & independent management

• Stand-alone component

• Interface abstraction & loose coupling

• Including standardization where possible

• Extensibility & interchangeability

• Scalability (component addition, update and deletion

without distruption)

• Autonomous self management

• Design for general use (ONAP & non-ONAP

consumers)

• Conformance to industry security & logging

• Clustering components by use cases

• Selection of the best components for a particular

task in systems

• Responsive integration and delivery

• ONAP still can provide reference automation for

coordination

by

DMaaP

SO
SDN-C

A&AI

PortalNG

DCAE

UC UI

CCSDK

VFC/NFVO

SDC

• Technical coordination and governance (former TSC)

• Architecture & Interoperability (could be on LFN level)

• LFN security

• LFN common practices

• Modeling

• LFN documentation consistency

• Technical outreach (SDO & Open-source)

Special Interest Groups (SIG)

• Assuming that we keep coordinated releases even when the
platform has been discontinued

• Continued review of Release management tasks for further streamlining –
proposals in the following slides

Release Management Tasks

by

M Project Tasks Intent / Background

1 M1 Review Code Coverage goal vs. actuals Maintain a minimum level of test coverage of code Removed

2 M1, M4 Update the FOSS (Free and Open

Source Software) wiki page (Project

FOSS → Project)

Maintain a record of OSS used in the project. Removed

3 M1 Request an architectural subcommittee

review

Make sure that PTLs request a review well in advance of M2. Keep – SIG

Architecture &

Interop

(LFN level?)

4 M1 Document API issues in the requirement

description

Ensure that API changes are documented for any dependencies. Removed

5 M1 DOCS: create documentation tracking

page and pre-fill information.

DOCS project only.

Make sure that the documentation tracking page is in place for each

release

Change to SIG

LFN

documentation

consistency

6 M1 Complete release planning template Provides visibility to the TSC and community into the activity planned by

each ONAP project for the release.

Simplified

Keep

7 M2 Verify information in documentation

tracking page. Update as necessary.

Provides visibility to the TSC and community into changes to ONAP

documentation.

It also enables the DOCS team to track documentation release steps,

particularly for new documents.

Moved to M3

Move to SIG LFN

documentation

consistency

Release Management Tasks

https://wiki.onap.org/x/wZdk

M Project Tasks Intent / Background

8 M2 Update documented risks Highlight technical, resource, and schedule risks to the release for each

project.

Removed

9 M3, RC Review license scan issues

(Note: this is typically done 2 - 3 times

per release)

Prevent releases with licensing violations. Keep

SIG Modeling

10 M2 Data models shared with Modeling

subcommittee

? Modified

Keep

11 M2 Complete Architectural subcommittee

review

Completing the arch review is a key goal of M2. This task helps ensure

that the review has been completed.

Keep – SIG

Architecture &

Interop

(LFN level?)

12 M2 Color code Impact View Per Component

page

Ensures that PTLs complete the handshake with requirement owners by

indicating which requirements they support.

Modified

Delegate to UC

owners

13 M2 Communicate API changes to other

projects

Ensure that projects with dependencies are informed of API changes. Keep

14 M3 Verify that test coverage goals have

been met

Maintain a minimum level of test coverage of code Keep

15 M3 Resolve all Global Requirement impacts Promote compliance with global requirements. Removed

Release Management Tasks

M Project Tasks Intent / Background

16 M2,

M3, M4

Verify that there are no merge requests

older than 36 hours

Ensure that milestone status is evaluated with relevant MRs completed.

Note: repeated 2 - 3 times throughout release.

Removed

17 M3 Resolve high/highest priority JIRA issues Don’t allow high priority issues to pile up at the end of the release.

Ensure that milestone status is evaluated with high priority issues

resolved.

Note: repeated 2 times throughout the release.

Removed

18 M4 Start OOM review with updated

container image

Ensure that PTLs have started a review by M4. Remove ?

19 M4 Assign Jira issues to the release Ensure that the “fix version” field for issues that are planned to be

resolved for the release is set to the current release.

Remove ?

20 M4 Complete preliminary documentation This is primarily for new projects or new documents. The intent is to avoid

confusion at the end of the release over basic organization and workflow

of docu

mentation.

SIG LFN

documentation

consistency

support PTL

21 M4 Review and update INFO.yaml Prevent INFO.yaml files from becoming stale and irrelevant. Keep

Release Management Tasks

M Project Tasks Intent / Background

22 M4 Update integration weather board Track progress in passing health check, completing pairwise testing, and

reaching platform maturity target

Removed

23 M4 Update Release Platform Maturity and

CII badging

Track actual progress vs plan. Remove

24 M4 DOCS: confirm that PTL repo changes

in M2 (new/removed repos) and M4

(preliminary doc) are represented in

master and RTD

DOCS team only

Ensure that new or removed documentation, and preliminary

documentation changes are accurately and properly reflected in the

master branch and in read-the-docs.

SIG LFN

documentation

consistency

25 RC Create a release branch Self explanatory Keep

26 RC Complete key updates page Provide fodder for ONAP promotion. Keep

27 RC Verify that pairwise testing has been

completed

Ensure that critical test step has been completed. Delegate to UC

owners

28 RC Deliver updated container to integration

team, if necessary

Ensure that the integration team has the latest container Removed

29 RC Complete project testing Complete the testing that the project proposed to do in their project

release plan.

Moved to sign-off

Keep

30 RC Finalize documentation Ensure that projects complete their documentation for the release. SIG LFN

documentation

consistency

Release Management Tasks

M Project Tasks Intent / Background

31 SO Verify readiness of release artifacts Final check that project artifacts are ready for release. Removed

32 SO JIRA Cleanup Close issues assigned to the current release, or reassign them to the

next release by updating the “fix version” field.

Keep

33 SO DOCS: verify that repo branch exists,

verify that RTD branch exists, verify that

project release notes have been finalized

DOCS team only.

Final evaluation of documentation for release.

Moved to

RC

SIG LFN

documentation

consistency

Release Management Tasks

