
TF: Improvements of
Metadata and other TF

modules
By

Matvey Kraposhin
(kraposhin.online)

• an implementation of IPv6 version of TF Metadata service
• what is Metadata service?
• how data passes through the TF data plane?
• how the current implementation works?
• new implementation key points
• how to use new code?

• some considerations about improvement of VxLAN capabilities
• a few words about TF data structures for storing routing information
• some notes on the TF control plane main entities
• the current implementation of VxLAN in TF
• limitations of the current implementation
• ideas for the improved implementation of the VxLAN component

• concluding remarks

The talk overview

an implementation of IPv6 version
of TF Metadata service

Objectives

Enable access to the Metadata service in
Tungsten Fabric via IPv6 protocol
Nowadays it is possible only via IPv4 (169.254.169.254)

Motivation

1. OpenStack Metadata service provides a mean for instances to
retrieve instance-specific data via the REST API. It can use both with
IPv4 and IPv6 stacks:

- 169.254.169.254;

- fe80::a9fe:a9fe.

2. Most of other TF’ link local services can use both IPv4 and IPv6

3. IPv6 is a “must” technology today in the SDN world

Metadata

• Metadata is a tool to inject data into VM

• Types of Metadata :
• Meta-Data

• User-Data

• Vendor-Data

• Network-Data

• OpenStack Metadata FAQ

• TF docs

• All links can be found in the TF Metadata6 spec:
https://github.com/tungstenfabric/tf-
specs/blob/master/An_IPv6_Metadata_proxy_for_the_TF.md

TF metadata service

Agent (Metadata proxy)

Nova

Server
(MetadataServer)

VM

Client
(MetadataClient)

Tungsten Fabric metadata service actually is essentially a proxy server. It relays
requests and responses from a VM to the Nova.

Nuances of requests relaying

vrouter can be considered as a large pinball desk with
an IP packet instead of metallic ball and TF control-
plane as levers

The most intricate part here is forwarding of messages from
overlay network of VMs to underlay network where the
Nova resides

NAT for Metadata

DNS, DHCP, ICMP,
and other similar
services

Metadata serviceMetadata service uses NAT (source, destination and PAT)
to forward messages to overlay network.

NAT is also used to identify VM in the Nova service: each
VM is assigned in the overlay a unique IP address in the
range 169.254.0.0/16.

When message comes to / from this address, the address
is converted to credentials (UUID).

IPv6 NAT is not implemented in Tungsten Fabric

TF Link Local Services

DNS
DNS6

General idea.
Intercept
an incoming
message,
generate a reply to
it and
send the reply
back.

The incoming
message is
intercepted at the
packet analysis
stage when the
new flow is created
by a request from
vrouter

DHCP
DHCP6

ICMP
ICMP6

Work at L3/L2 levels

Metadata General idea.
Make a proxy: create 2
communicating TCP
connections (one for
interaction with the actual
client, second for interaction
with Nova)

To connect over- and
underlay networks, use
networks port and network
d/s address translation

Work at L4/L3 levels

Current version of Metadata

1. VM sends request to the metadata server
(169.254.169.254)

2. vrouter requests for flow between VM and
169.254.169.254

3. Parameters of NAT/PAT are sent to vrouter by the
agent

4. vrouter sends message to Agent using NAT/PAT.
UUID of a VM is obtained via LL (169.254.0.0/16)
address.

5. Agent sends request to Nova

VM

vrouter

Agent

Nova

1

2 3 4

5

Modified version of Metadata

VM

vrouter

Agent

Nova

1

2 3 4

5

1. VM sends request to the metadata6 server
(fe80::a9fe:a9fe)

2. vrouter requests for flow between VM and
fe80::a9fe:a9fe

3. New routes + 1 record linking VM LL IPv6 and VM
UUID are created by the Agent

4. vrouter sends message to Agent using new routes

5. Agent sends request to Nova (using VM UUID
identified at step 3).
Key idea: use package analysis to detect metadata
requests (like in DNS, DHPC, etc) and TCP proxyingto
exchange data between user and NOVA

Challenges

1. Modification at both L4 and
L3 levels, including NAT(6).
TF still doesn’t have NAT6

2. Complex relations between
classes used to redirect
requests to NOVA and to
retrieve reply back

MetadataProxy

HttpConnection

MetadataServer

HttpServer

SslServer

MetadataClient

HttpClient

TcpServer

MetadataClient
Session

HttpClient
Session

TcpSession

MetadataIp

MetadataIp
Allocator

MetadataServer
Session

HttpSession

Inheritance
Usage

Demanded code changes

The changes embraced next parts of vrouter and Agent:

- MetadataProxy (Http/Tcp servers for IPv4 and IPv6)
- InterfaceTable (find creds using ll ipv6 address)
- PktFlowInfo (packet interception, routes announcement)
- TcpServer, TcpSession (support for IPv6)
- address_util.cc: support for IPv6 in ResolveCanonicalNameIPv6(…)
- vrouter: packet IPv6 forwarding between underlay and overlay was enabled
(just 1 line of code)

Source code to intercept incoming
metadata request

Steps to enable Metadata6

• Enable forwarding of IPv6 packets between underlay and overlay:

• Connect a VMI with the IPv6 address to a VM

• Start using Metadata6

tf-controller commit:
https://github.com/tungstenfabric/tf-controller/commit/61c062d0a8e51b1826002d4d7bd0ce33da1cf986

tf-common commit:
https://github.com/tungstenfabric/tf-common/commit/c0527f40624854c610d1f7a3bfd4d9d515693e23

tf-vrouter commit:
https://github.com/tungstenfabric/tf-vrouter/commit/97cbacb1f12151efb65717adf5dd73aae21465e4

tf-specs commit:
https://github.com/tungstenfabric/tf-specs/commit/d0fdc712db8ccc755ad392464c5af835f1ec927e

Case when we have only IPv6 VMIs

Enable IPv6 between underlay and overlay (on the compute node):

echo "Y" > /sys/module/vrouter/parameters/vr_force_ipv6_underlay_enabled

Prepare virtual-network with IPv6 subnet, create new IPv6 instance and link it with VMI

Start a virtual machine with connected IPv6 VMI

Diagnostics

• Check that the IPv6 link-local address of the Metadata proxy server
(fe80::a9fe:a9fe) has appeared in the corresponding VRF table.

• Security groups

• Connect VM to VMI, ping -6 fe80::a9fe:a9fe%eth1

• Check appearance of corresponding routes (ll ipv6 of eth1) in the VMI
VRF table and in the fabric vrf (__default__)

• Check that corresponding vrouter option is turned on (enable
/sys/module/vrouter/parameters/vr_force_ipv6_underlay_enabled)

• tcpdump (vhost0, eth1, tap-…)

some considerations about
improvement of VxLAN
capabilities

Each Agent is responsible for storing of the part of the Controller’s table. That part corresponds to local VM interfaces. The
remaining part is stored as tunnels. Each controller table has as many copies as many controllers are present in the TF.

TF Routing information

• Tungsten Fabric as a highly specialized tables processor:
• The Controller table (centralized but with duplicates)
• The Agent table (part of controller table)
• The vrouter table (forwarding table)

Contro
ller 1

Contro
ller 2

Agent
1

Agent
2

Agent
3

vrouter
1

vrouter
2

vrouter
3

Controller Agent 1 Agent 2 Agent 3

The TF agent table(s)

• Virtual Network (VN)

• Virtual Routing & Forwarding (VRF)

• Route tables (EVPN & INET)

• Route

• Prefix:
• Prefix address – L3 (IP) and L2 (MAC)

• Prefix length

• Path

• Nexthop

• Peer

Virtual Network

Virtual Network contains everything what is needed to define a connectivity between virtual machines (nodes):

• Access control list

• List of IPAMs

• Security logging objects

• Routing information (VRF table)

Each Virtual Network is stored in an object of the VnEntry class.
VnEntry objects are stored in VnTable class

Virtual Routing & Forwarding

Virtual Routing & Forwarding instance defines tables to organize L2 and L3 reachability between nodes:

• Inet IPv4 table (L3)

• Inet IPv6 table (L3)

• EVPN table, which supports Type 2 and Type 5 routes for IPv4 and IPv6 protocols.

• Other tables

Each VRF instance is stored in an object of the VrfEntry class. VrfEntry
objects are stored in VrfTable class

Route tables

Route table defines list of records to reach nodes by their IP or MAC address:

• a list of routes

• tools to find records

Each Route table instance is stored in an object of the AgentRouteTable class. AgentRouteTable objects
are stored in VrfEntry class.

Route

Route is a record that is characterized by:

• a destination IP prefix (in case of L3)

• a destination MAC (in case of L2)

• list of paths to a destination

• tools to process properties of a route

Each Route table instance is stored in an object
of the AgentRoute class. AgentRoute objects
are stored in AgentRouteTable class.

Prefix

Prefix is a sequence of bytes defining address of a network node:

• it is 6-byte in case of MAC address

• it is 4-byte in case of IPv4 address + prefix length

• it is 16-byte in case of IPv6 address + prefix length

Prefix is a synonym for address.

MAC addresses are stored in MacAddress class. IP addresses are stored in IpAddress class. The latter one
is an alias for boot::ip::address

Path

Path contains information to reach a prefix within the route and tools to manipulate it:

• Nexthop

• Peer

• Tags list, security groups list

Each Path instance is stored in an object of the
AgentPath class. List of AgentPath objects
is stored in the AgentRoute class.

Nexthop

Nexthop defines next destination of a packet to reach the prefix address from a Route:

• type of Nexthop:

• the Interface (points to an interface of the VM);

• the Tunnel (points to a neighboring compute node);

• the VRF (points to another VRF);

• the Composite (points to several entities simultaneously, e.g. ECMP);

• other types;

• type-specific information

• manipulation tools

Each Nexthop is stored in an object of the NextHop class. List of NextHop objects
is stored in the NextHopTable class.

While the general sense of the Nexthop in TF is similar to what is used in networks,
it is slightly different from the latter, because it includes local TF definitions.

Peer

Peer shows origin where a path originates from or purpose of a path. Peers can be of next types:

- LOCAL_VM_PEER characterises paths ending in VMs connected to a TF compute (e.g., interfaces);

- BGP_PEER characterises paths which are announced via BGP/XMPP protocol (e.g., tunnels);

- EVPN_ROUTING_PEER characterises paths which are used for routing between networks;

- ECMP_PEER characterises paths pointing to several VMs connected to a single TF compute (e.g. several
interfaces);

- and others.

Each Peer is stored in an object of the Peer class.
Some Peers are allocated as objects inside the Agent class.

An example of a route table

• A peer together with a
nexthop make up the path.

• List of paths make up a
route. Combination of a
peer type and a nexthop is
unique within a route.

• Routes make up a route
table.

• Route tables make up a
VRF instance.

Routes leaking

Routes leaking is a procedure of routes synchronization between two tables according to some predefined
rules.

Routes can be synchronized between tables in one VRF instance or between VRF instances.

Prefix1

Path1: Nexthop1 Peer1
Path2: Nexthop2 Peer2

Prefix1

Path3: Nexthop3 Peer1
Path4: Nexthop4 Peer2

Prefix1

Path1: Nexthop1 Peer1
Path2: Nexthop2 Peer2

Prefix1

Path3: Nexthop3 Peer1
Path4: Nexthop4 Peer2

Table1 Table2

VxLAN routes leaking in TF

VxLAN
LR

Bridge
VRF 1

Bridge
VRF 2

Bridge
VRF 3

Rou-
ting
VRF

VxLAN implementation of TF is a routes leaking mechanism between the
routing VRF instance connected to a VxLAN logical router (LR) and bridge
VRF instances connected to this LR.
Within each routing – bridge pair of VRF instances routes are exchanged in
accordance with these rules:

- bridge VRFs routes with interface path are copied in the routing VRF;

- advertisement of an interface route in the routing VRF yields
advertisement of a VRF NH path in other bridge VRF instances;

- tunnel paths (path with tunnel nexthop and BGP_PEER) are copied via
XMPP/BGP channel of TF.

interface

interface VRF

VRFVRF

Implementation of VxLAN in TF

Bridge
VRF 2

Rou-
ting
VRF

EVPN
T2

Table

Inet
Table

EVPN
T5

Table

Inet
Table

XMPP
/BGP

VxLAN implementation.

- a change in a bridge EVPN Type 2 tables creates VRF nexthop in the
Inet table of the bridge VRF;

- Interface (LOCAL_VM_PORT/ECMP_PEER peer) paths are copied from
the bridge VRF to the routing VRF into paths with LOCAL_VM_PORT
peer for EVPN Type 5 table and EVPN_ROUTING_PEER for Inet table;

- tunnel paths (with BGP_PEER) are copied via XMPP/BGP channel of TF
to the routing VRF EVPN Type 5 table into paths with
LOCAL_VM_PORT.

An analogy with baskets

Routing VRF Inet route

Bridge VRF Inet route

Routing VRF EVPN Type 5 route

Interface ECMP Interface

LOCAL_VM_PORT BGP_PEER

EVPN_ROUTING_PEERRoute is a basket
Path is a section in the basket

Limitations of the current approach

1. Since route leaking is triggered by changes in EVPN Type 2 and Inet tables, then only L2-L3
routes could leak.

2. Routes originating from special types of IP instance cannot leak: Floating IP, L3 Allowed Address
Pairs, BGP-as-a-Service, etc.

3. Deletion of one path in a bridge VRF route might lead to deletion of the whole corresponding
route in the routing VRF (Since BGP_PEER and LOCAL_VM_PORT are mixed
EVPN_ROUTING_PEER in the Inet table of the routing VRF instance).

4. Synchronization problems: if, for example, a tunnel path arrives later than interface one, it
rewrites interface, etc

5. Composite (ECMP) routes are not fully supported.

Experiment.
Using TF of all versions except master branch, create several VMI, link them to 1 IP instance and connect VMIs to
virtual machines on different compute nodes. In this case, ECMP routes in bridge VRF instances and the routing
VRF instance will be different.
Issue No. 4 was partially resolved in the master branch.

Improved route leaking scheme

1. Trigger route leaking only by changes in Inet bridge VRF tables.
2. Do not leak BGP_PEER routes between EVPN Type5 and Inet tables of the routing VRF.

Bridge
VRF 2

Rou-
ting
VRF

Inet
Table

EVPN
T5

Table

Inet
Table

XMPP
/BGP

LOCAL_VM_PORT LOCAL_VM_PORT

XMPP
/BGP

Bridge
VRF 2

Rou-
ting
VRF

EVPN
T2

Table

Inet
Table

EVPN
T5

Table

Inet
Table

XMPP
/BGP

The old (current) route leaking scheme The new (modified) route leaking scheme

Analogy with baskets for the modified
case

Routing VRF Inet route

Bridge VRF Inet route

Routing VRF EVPN Type 5 route

Interface ECMP Interface

LOCAL_VM_PORT BGP_PEER

LOCAL_VM_PORT BGP_PEER

XMPP/BGP

In this case FIP/AAP leak naturally, BGPaaS
routes leaking requires minor changes to the
code. ECMP routes are now identical in bridge
and routing VRF instances.

2 parts were of TF have been rewritten completely:
1) Leaking of LOCAL_VM_PORT routes
2) Input of routes from XMPP/BGP

Implementation state

1. The new version of overall algorithm for routes leaking for VxLAN has been developed.
2. Preliminary version which allows FIP/AAP/BGPaaS routes leaking has been implemented.
3. Code refactoring is ongoing.
4. Next stage: unit tests and functional tests.

concluding remarks

Acknowledgements

• Yurii Konovalov for inspiring ideas and overall supervision.

• Andrey Pavlov for CI support and limitless patience.

• My colleagues for valuable conversations.

• Sayali Mane, Casey Cain, Nick Dave for
organizational support.

• Juniper corporation for the TF technology.

• And all participants of this D&TF session.

Russian TF group

Concluding remarks

• Extension of TF’s Metadata service to IPv6 protocol allows injection of
data into VM in pure IPv6 networks

• The approach can be re-used for custom TF link-
local services that are still IPv4

• The new algorithm of route leaking for
Tungsten Fabric VxLAN has been proposed

• This algorithm allows to support more ways of
routes advertising, such as Floating IP,
BGP-as-a-Service, static interface routes, etc

Russian TF group

Click to edit Master title style

