
Intro to Clover
Fraser to Gambia (and beyond)



Brief Intro to Kubernetes

• Basic objects: nodes, cluster, kube-master


• Docker orchestration platform conforming to cloud native application concept for infrastructure 


• One master (and one or more standby kube-master if desired), minion nodes join cluster as they come


• A Linux process name “kubelet” will run on every node for local management, health probe, setting up environment ….etc


• Core to Kubernetes is its scheduler, which (by default) schedules (and balances) workload on all the worker nodes (master node can be a worker node also)



Brief Intro to Kubernetes 
(Pod & Service)

• Pod is the finest granular object in k8s 
(and it is the unit of scaling up)


• Pod can have one or more containers 
running inside (different cgroup, same 
namespace)


• Same network namespace means containers within a pod 
can communicate with each other via localhost


• Typical pod only has one interface (eth0 addressable inside 
the container, veth pair on host) —- one IP address per pod

• Service is what is exposed as an accessible entity 
(“endpoint”) in k8s, backed by pods. Basically a 
“microservice”


• Service maps to the set of pods via labels


• Service names == domain name entry in DNS server 
maintained by k8s


• A service moreover can expose one or more ports 
(i.e., TCP port). kube-proxy, which runs on each node, 
maintains the mapping of the external service:port to 
a backend pod (on a node). When multiple ports are 
exposed for a service, port needs to be named



Brief Intro to Kubernetes 
(external access to Services)

• There are at least three mechanisms to expose services to external users: 
NodePort, LoadBalancer (needs to map to a cloud provider), and via an ingress 
controller. Of these, only the ingress controller is relevant to our discussion


• Ingress controller is basically having an HTTP load balancer sitting in front of 
your cluster


• Allowing cluster to expose different paths (HTTP) and map that to different micro service entry point



Brief Intro to Istio

• Need for service mesh in k8s setup: 


• decouple infrastructure logic (IP, where pod is scheduled…etc) from application development


• Allowing declarative language from application to express infrastructure needs


• Basic: sidecar (service proxy in each pod), mixer maintains policy definition, and pilot (Istio-manager now in 1.0) configures 
the service proxy 


• Traffic flow: 


• From external to cluster: istio-ingress


• From pod to pod: all inbound and outbound traffic goes through the sidecar Envoy



Brief Intro to Istio: 
Traffic Policies

• The core Istio “network” policies include:


• Traffic shifting: assign % of traffic to a matching label, assign traffic to a destination label based on HTTP header info (agent, 
cookie…etc)


• Traffic Mirroring: mirror traffic to two (or more) destination labels


• Circuit Breaking: disconnect traffic to a destination label based on HTTP header fields


• Rate limiting: limit how many connections / sessions any clients can have per a time quanta (e.g.: one second)


• Fault injection: inject delay to any connection to pods associated with a destination label


• Mostly operational, fault isolation type policies 



OPNFV Clover
• Examine how cloud native technologies / open source projects can potentially be used for NFV use 

cases


• Assuming Kubernetes with Docker as container runtime


• Main Areas of Emphasis: 


1. Use of service mesh —- beyond just performance impact, whether the operational model makes sense for CNF


• Istio


2. Examine use of cloud native tools for visibility, traceability, operability, and debuggability


• Jaeger —- tracer for OpenTracing (trace collection)


• OpenTracing —- client API to invoke traces


• Prometheus —- time series data base for metrics / monitoring


• fluentd —- log collection


3. Examine continuous delivery framework for cloud native applications


• Spinnaker (CI/CD framework)


4. Target deployment environments


• Baremetal (Pharos)


• GKE



Clover Fraser 
Clearwater (IMS) on Istio

• Poor result: most of the components don’t really work (traffic blackhole or even Envoy crashing)


• It does work with Bono and Ellis



Clover Fraser 
Sample Network Function

istio-
Ingress

v2 v1

mirror

Adapter 
talking to 

Snort 

Ambassador 

Data

Control

1.A web service gateway with a variety of essential HTTP based network services —- each of which is open-source, battled tested, 
hight-performance, and performs its specific network function extremely well (in this demo, the majority of the micro-services were 
built with specific configuration of Nginx to allow it to serve different role —- which exemplifies the micro-service concept: a software 
module that does ONE function very well) 

2.As both data and control traffic are HTTP based, both data and control traffic will traverse through the service mesh 
3.Takeaway: HTTP based traffic works well with Istio / Envoy —- but also in the context of Kubernetes also. Pods send requests to 

other pods via dynamic (per request) look up of domain name, and therefore the IP address of the next micro service is not resolved 
until the time the request is able to be sent out, which correspond well with the dynamic nature of Kubernetes pod scheduling 

4.Potential use of HTTP tunneling for pod to pod data path, and use control to do chaining



Clover Fraser 
A-B Testing via Tracing Data from Envoy / Jaeger

CI/CD Pipeline

logging

tracing

monitoring

State 
sharing

Validation

Ingress

v2 v1

mirror

50%

50%

1. CI/CD deploys L7 proxy version 2 
2. Istio policy applies for 50% traffic to control (v1) and 50% to variant (v2) 
3. Clover software gathers logging / tracing / monitoring and state info to validate “success” or “fail” 

during a time of traffic 
4. If success, Istio policy of moving 100% traffic to v2 is applied 
5. Clover software gathers info to validate 100% traffic to v2, and results met “success” criteria 
6. Fault injected delay to v2 path to simulate failure, and confirm “rollback” case



Clover Gambia 
Visibility and Control Engine

1.The core software module runs on clover-system namespace, and is responsible for installing Clover related software packages 
2.At its core is the Clover Collector —- which reads from various data sources and organize / giving structure (i.e., allowing SQL 

like query) to the incoming raw data 
3.A client program cloverctl is implemented, and provides CLI to all core Clover functionality

Clover
Controller

clover-system

Clover



Visibility Demo



Clover Gambia 
Clovisor

1.Lightweight, low latency network tracing module 
2.Utilizes IOVisor (bcc, gobpf) and eBPF to insert bytecode for both ingress / egress direction of a pod 
3.In cluster client to automate process of monitoring and service port / protocol info 
4.Stream trace / stats / metrics / logs to respective tracer / collector modules

Clover
Clovisor



Clovisor Demo



Clovisor: Network Tracing… the Cloud 
Native Way

1.Cloud Native: 
a)Cloud Provider Independent


• Bare-metal servers, GKE, EKS…etc

b)CNI Plugin Agnostic


• All CNI plugins should work unless such plugin does kernel bypass

c)CPU Architecture Independent


• Any architecture supported by Linux (x86, ARM…etc), code 
currently tested with kernel versions 4.14 and 4.15

2.Implemented with Cloud Native Design 
Methodologies: 
a)Config Decoupled from Compute


• Config store in backing store or through environment variables

b)Relatively Stateless


• TCP connection/session tracking only dynamic states

c)Scale-out Architecture


• Pod monitoring partitioning via election from datastore

• DaemonSet —- linearly scale on each node in cluster

3.In-depth Integration with Cloud Native 
Ecosystem Projects: 
a)Built-in Kubernetes Client


• Monitoring k8s pod states

b)Integrate with CNCF Collector Projects


• OpenTracing to Jaeger, metrics to Prometheus

visor

visor

visor



Clover Gambia 
Continuous Delivery Framework

1.Goal: Deployment on bare metal and GKE —- and use it as CD platform 
2.Spinnaker installed, hooked with OPNFV DockerHub, and whenever a component is updated (on the 

sample CNF side), the CD pipeline will be executed 
3.Long running testbed

Client side 
test tools 
(jmeter)

Istio Ingress 
Controller 

Application 1

Application 2

Application 3

Clover Tools

LF granted us a 6 nodes 
cluster on GKE

Clover 
sample CNF



Clover Gambia 
Add Gateway Network Functions to Istio

1.Network functions in clover-gateway namespace can serve as Istio gateway enhancement 
2.Simply providing two main functions: web application firewall (WAF) and intrusion 

detection 
• Two primary service insertion mechanism: redirect (traffic flow affected by service) or 

mirror (“read” mode)

Traffic
CloverRedirect

Mirror

Ingress



Deployment

Visibility & Traceability

Istio Network Functions Extensions

Add relevant network 
functions to enhance security and 

visibility of Istio mesh

Expose data to backend 
datastore 

Application logic for 
correlating data and Istio 

exposed data

Target environment 
and web applications to test 

ingress

Application specific 
SYSTEM and 

FUNCTIONAL tests

CD pipeline

Clover Gambia (and beyond)

Core network tracing / 
monitoring



Backup Slides



eBPF: Where is the packet being 
intercepted?



and

golang

1.eBPF: 
a) Inject bytecodes to kernel trace points / 

probes

• Event driven model


b)Networking: tc

• Utilizes Linux tc (traffic control) to inject bytecode 

on ingress and egress direction of a network 
interface


c)Verifier / JIT (just-in-time compiler)

• Verifier ensures bytecode does NOT crash kernel

2.IOVisor bcc: 
a)Ease of eBPF Development


• Helper functions, kernel API wrappers…etc

b)Dynamic Validation and Compilation


• Userspace eBPF code written in ‘C’ is dynamically 
verified (static analysis) and compiled


c)gobpf

• Golang interface for userspace code —- much 

more performant than Python


