
Let’s Move Everything to 
Kubernetes!
ONAP “Dublin” Developer Forum
Jan 9, 2019

Tal Liron
Principal Software Engineer
NFV Partner Engineering



Poll

2

Is it a good idea to deploy all our network functions 
on Kubernetes?
1. No

2. It’s appropriate for a subset of use cases (edge?)
3. ?
4. Maybe later; for now let’s focus on OpenStack
5. YES! 



Part 1
Why Kubernetes?

3



We’ve been doing it wrong

4

Lifecycle management is the enemy:
● Complex workflow (otherwise we wouldn’t have to “manage” it)
● Must keep track of state of many and diverse resources
● (A lot of state: logs, timings, databases, queues)
● When things go wrong the system is left in indeterminate state
● (Things go wrong a lot; clouds are expected to be unreliable)
● Complexity of automation reflects the complexity of the lifecycle
● So, now we have even more things that can go wrong



Paradigm shift (or: back to basics)

5

● “Scheduling” is intent-based
● “Life” has no “cycle”—it’s just a binary, either scheduled or not
● And so LCM is an implementation detail (wait for next slide)
● Also: containers are an implementation detail (we deal with “pods”)

“Legacy” orchestration has the wrong metaphor: it’s actually more like 
puppeteering than conducting an orchestra (tangle of strings)

In Kubernetes we are finally truly orchestrating (back to basics) where 
every part of the orchestra knows its music



What happened to LCM?

6

Two things:
1. It’s hardcoded:

a. “container” image is loaded
b. network is assigned
c. configs are mapped
d. entry point is called

2. Welcome to cloud native! Application will initialize itself
We used to call this Inversion of Control (IoC)

Bottom line: LCM is not the orchestrator’s problem anymore



The Evolution of “Containers”

7

Prehistory

chroot/cages

Monit

supervisord

OSGi

Lightweight VMs

Docker

Mesos

LXD

Microservices

Kubernetes

OpenShift

Marathon

Service Mesh

Istio

Linkerd

Conduit

(Hystrix, Finagle)

portability

isolation

orchestration

composition



Part 2
Instead of OpenStack?!

8



Have your cake and eat it

9

I know what you’re going to say:
Kubernetes seems great, but CNFs don’t really exist yet

But …

We can fully support “legacy” VNFs on Kubernetes
And we should because reducing LCM is a big win

(We’re talking network functions; rest of data center can be whatever)



Kubernetes Network Function Extension

10

KNFE (pronounced “knife”)

Off-the-shelf:
● Kubernetes (production-ready distributions, like OpenShift)
● KubeVirt (the “V” in “VNF”)
● Multus (and maybe Network Service Mesh)
● Cluster API

Missing:
● LCM controller for VNFs
● Network-as-resource operator
● Network service operator

(All the above should be cloud-native, almost stateless, tiny)



KNFE Runtime Architecture

11

Pod

Virtual Machine

LCM Controller Network Service 
Operator

Network-as-resource 
Operator

Heat + Mistral Adapter

Network Orchestrator 
(SDN)

Connection Points

Pod

Virtual Machine

(P.S. All of this can be modeled in TOSCA)

Network Service Orchestrator

Ansible, Chef, NETCONF, etc.



Part 3
What About ONAP?

12



KNFE and ONAP

13

Manager (“NFV-O”):
SO, SDC, A&AI, SDN-C, DCAE, some S-VNFM

Embedded in infrastructure (“NFV-I”):
● Kubernetes = VIM + Multi-Cloud
● KNFE = G-VNFM + VF-C + App-C
● Custom operators = some S-VNFM



THANK YOU

plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat


