LILF
NE TWORKING

LFN Developer & Testing Forum

LILF
NETWORKING

LFN Developer & Testing Forum

Developing and testing an
out-of-tree plugin for VPP

Mauro Sardara
SW Engineer @ Cisco Systems

LILF
VPP _—ﬁ NETWORKING
o oS YW LFN Developer & Test ing Foru m

* Vector Packet Processing

— High performance stack

— Runs on commodity HW

» Part of Cisco products since 2006
* Open sourced in 2016 under FD.io
* Moved to LFN in 2018

CILF

eeeeeeeeeeeeeeeeeeeeeeeee

L3 - 19+ Mpps / Core
— 2.1 GHz Ice Lake D
— Small packets (64B): 15 Gbps

— Ethernet MTU (1500B): 246 Gbps
— Scalable FIB

Millions of entries
Fast convergence

CILF

VPP NETWORKING

LFN Developer & Testing Forum

* Optimizations
— DPDK Plugin

— ISA
°* SSE/AVX/AVX2/AVX512 / NEON...

* Batching

* No Mode Switching

* No Context Switching
* No Blocking

— Multi Core
* Cache / Memory efficiency

CILF

How does VPP work? PR SR T
e l Packet vector
® VPP is a ‘packet processing | imz |HRRNERED
graph’
— Direct graph of forwarding nodes dpdk-inp
® Nodes are

— Small
— Loosely coupled

® VPP processes vectors of packets mpls-input @8 ip6-input ip4-input
— Passed from node to node
— Multiple packets per invocation
ip6-rewrite ip6-local

CILF

How does VPP work? NETWORGNE
« l
® Each node has its vector(s) N
® Packets are “passed” from dpdk-ian/Packet vector
vector to vector TIT1111

ip6-input ip4-input
00000000 {7 00000000

mpls-input
00000000

ip6-rewrite ip6-local

cILF
Scalar vs Vector packet processing NETWORKING

eeeeeeeeeeeeeeeeeeeeeeeee

* 19 Mpps on 2.1GHz CPU
— 110 cycles/packet

* Need to reduce cache misses to the minimum

— Cache hit:
~2-30 cycles

— Cache miss (main memory)
~140 cycles

Scalar vs Vector packet processing

LILF
NETWORKING

LFN Developer & Testing Forum

Instructions

Main Memory

Packets

<f-

OO~

Processor

— EXpensive

CILF
Scalar packet processing NETWORKING

LFN Developer & Testing Forum

* One packet at a time
— ISR takes a packet off a rx ring
— Processes by traversing a set of functions
« function_a() -> function_b() -> function_c(), ...
* return, return, return, return, ... return from interrupt
— QOutcomes
* Drop
* Punt
* Rewrite & Fwd

Scalar packet processing

LILF
NETWORKING

LFN Developer & Testing Forum

Instructions

Main Memory

Packets

— EXpensive

Ye—

Processor

/ CILF
Scalar packet processing NETWORKING

LFN Developer & Testing Forum

Instructions Packets

Q‘ o /,IIIIIII

Main Memory

Processor

/ CILF
Scalar packet processing NETWORKING

LFN Developer & Testing Forum

Instructions Packets

000 rum
Main Memory
MISS /

Processor

CILF
Scalar packet processmg NETWORKING

LFN Developer & Testing Forum

Instructions Packets

cup puattun
Main Memory
MISS /

Processor

CILF
Scalar packet processing NETWORKING

LFN Developer & Testing Forum

* |ssues

— When the call path length exceeds the size of |-cache,
thrashing occurs

- Each packet incurs an identical set of I-cache misses
« Only solution: bigger caches

— Deep call stack adds load-store-unit pressure since
stack-locals fall out of the L1 D-cache

CILF
Vector packet processing NETWORKING

LFN Developer & Testing Forum

Instructions Packets

Main Memory

Processor

’ CILF
Vector packet processing NETWORKING

LFN Developer & Testing Forum

Instructions Packets

Q00 rum
Main Memory
MISS /MISS

Processor

’ CILF
Vector packet processing NETWORKING

LFN Developer & Testing Forum

Instructions Packets

Q‘ o /I/IIIIIII

Main Memory

Processor

’ CILF
Vector packet processing NETWORKING

LFN Developer & Testing Forum

Instructions Packets

Q‘ o g

Main Memory

MISS

Processor

CILF
Vector packet processing NETWORKING

LFN Developer & Testing Forum

®* Consume up to 256 packets at a time from device rx ring
® Invoke one node function at a time against this ‘vector’

® Fixes I-cache thrashing problem
— Graph node dispatch functions iterate over up to 256 elements
— Processing first packet ‘warms up’ the I-cache

— Remaining packets all hit the I-cache
¢ Reduces I-cache miss stalls by up to 2 orders of magnitude

® Downside: increase of D-Cache misses.. but

— Given a vector of packets
¢ Pipeline and prefetch to cover dependent read latency

CILF

Vector packet processing — D-Cache NETWORKING

LFN Developer & Testing Forum

Instructions

Main Memory

Packets

Expensive

Ye—

A
Processor

Vector packet processing — D-Cache NETWORKING

LFN Developer & Testing Forum

Example: Processing packet 1 & 2
VPP node pseudocode

Might have a cache miss for packet 1 & 2

——

while packets in vector

—

Packets while 4 or more packets
n E B H H E I PREFETCH #3 and #4 <+—
_Main Memory —{ PROCESS #1 and #2

while any packets
D-caché \ <as above but single packet>
v Y

112))3)4

Processor

Vector packet processing — D-Cache NETWORKING

LFN Developer & Testing Forum

Example: Processing packet 3 & 4
VPP node pseudocode
The cost of the first D-cache miss is amortized by the subsequent

D-cache hits. while packets in vector
Packets " while 4 or more packets
n E B n H E I PREFETCH #5 and #6 <—
Main Memory | PROCESS #3 and #4
v —

while any packets
<as above but single packet>

Processor

CILF

Extend VPP with plugins NENVIOR(IE

* Plugins are first class citizens

* Plugins can:
— Add nodes
— Add API
— Re-arrange the graph
* Most VPP features are implemented as
In-tree plugins
— And then loaded at run-time via d1open()

CILF
Develop out-of-tree plugin NENVIOR(IE

- Examples are base don the hicn plugin

 Code
— https://github.com/FDio/hicn/tree/master/hicn-plugin

* Docs
— https://hicn.readthedocs.io/en/v22.02-rcO/vpp-plugin.html

https://github.com/FDio/hicn/tree/master/hicn-plugin
https://hicn.readthedocs.io/en/v22.02-rc0/vpp-plugin.html

CILF
Develop out-of-tree plugin NETWORKING

LFN Developer & Testing Forum

VPP Structures

| | CILF
VPP Base Structures SEMAMORGES

LFN Developer & Testing Forum

The vector of packets is called FRAME
Each element is called VECTOR

struct vlib_buffer_t
TTTTT {
u8 datalol;

' - -

A vector is an index to a vlib_buffer_t

Pointer to packet data.

CILF
Develop out-of-tree plugin NETWORKING

LFN Developer & Testing Forum

Design your nodes

LILF
Design your nodes NEVORGEE

* Follow VPP Style

— Multi-loop, Branch prediction, Function flattening, Lock-free
structures

® Implement processing function that

— “Moves vectors” from your node’s frame to the next node’s
frame

— Processes packets as YOU want
®* Add whatever else you need
— Supporting Functions, macros, variables, etc.. (C code)

T , CILF
Register your node NETWORKING

LFN Developer & Testing Forum

® Each node must be registered to VPP through
VLIB_ REGISTER NODE macro

VLIB_REGISTER_NODE(hicn_data_fwd_node) =
J

{ Node processing function
. function = hicn_data_node_fn,

.name = " Name of the node

.type = VLIB_NODE_TYPE_ INTERNAL, Type of node
.n_errors = ARRAY_LEN(hicn_data_fwd_error_strings),

.error_strings = hicn_data_fwd_error_strings,

.n_next_nodes = HICN_DATA_FWD_N_NEXT,

.next_nodes = {

[HICN_DATA_FWD_NEXT_V4_LOOKUP] - - Next nodes in the Vpp graph
[HICN_DATA_FWD_NEXT_ERROR_DROP] - -

iy

L.
I

CILF
Process Packets SETWORIE

LFN Developer & Testing Forum

I
LIIITIT

| |

\]

n_left from

to_next ip4-lookup

|

T111
[|
\

|

n_left to next

next_index

Hold the actual next
node id

A

next0="?

CILF
Process Packets SETWORIE

LFN Developer & Testing Forum

vlib_buffer_t objects
. L T T I e B I
ol | I I | |
bi{: (U R L

\

b0

n_left from

to_next ip4-lookup error

|

T111
[|
\

|

n_left to next

next_index

Hold the actual next
node id

A

next0="?

CILF

Process Packets SETWORIE
LFN Developer & Testing Forum
from vlib_buffer_t objects
: T T I I e B T
»l | | I I I |
TTTTIT AL
| |
\] \
n_left from b0
to next error

ip4-lookup

o
|

n left to next ,
- T T next_index

Hold the actual next
node id

A

next0="?

LILF
Register Plugin NETWORKING

LFN Developer & Testing Forum

® VLIB_PLUGIN_REGISTER() registers the plugin with the current
VPP

¢ VLIB_INIT_FUNCTION() registers the function that will be called
to initialize the plugin

VLIB_INIT_FUNCTION (hicn_init);

VLIB_PLUGIN_REGISTER () = { .description = "hICN forwarder" };

CILF
Develop out-of-tree plugin NETWORKING

LFN Developer & Testing Forum

Insert your nodes in the vlib graph

LILF
Insert your nodes in the vlib graph NETWORKING

LFN Developer & Testing Forum

® Direct all the packets from one interface
— vnet_hw_interface rx_redirect_to _node()
® Capture packets with a particular ethertype
— ethernet_register_input_type()
* Packet for new protocol on top of IP
— ip4_register_protocol()
* Packet sent to a specific UDP port
— udp_register_dst_port()
® Direct all packets from one ip prefix
— Create your own Data Path Object (i.e. result of a FIB lookup)

LILF
Compile and install your plugin NETWORKING

LFN Developer & Testing Forum

Compile and install your plugin

LILF
Install Dependencies NEVORGEE

» Install VPP in your system
— https://s3-docs.fd.io/vpp/22.06/gettingstarted/installing

» Install a build system for your project
— CMake is a good candidate for building C projects

You can use also other tools

— Used also by VPP

https://s3-docs.fd.io/vpp/22.06/gettingstarted/installing

LILF
CMake IL\IETWORKING

LFN Developer & Testing Forum

¢ Set VPP architecture/dependent optimizations compilation flags

b A S A e e S e S S s e e e,
Compiler Options

e e L e B e e L e e L e L o L o L o L e Lo L L oL oL L o L g o
set

set

${DEFAULT_COMPILER_OPTIONS}
${MARCH_COMPILER_OPTIONS}

LILF
CMake NETWORKING

LFN Developer & Testing Forum

® If compiling in debug mode, do not forget to define CLIB_DEBUG

LILF
CMake NETWORKING

LFN Developer & Testing Forum

¢ Generate and install the API files

— Use installed vppapigen and vapi_{c_,cpp}gen.py
B B B B B e i Bt B e e i
VPP API Generation
B B B T B B e i B B i e i
execute_process
COMMAND ${VPP_HOME }
COMMAND ${VPP_HOME }

execute_process

COMMAND ${VPP_HOME } ${PROJECT_BINARY_DIR}
COMMAND ${VPP_HOME } ${PROJECT_BINARY_DIR}
install ${PROJECT_BINARY_DIR}

${CMAKE_INSTALL_DATAROOTDIR}

LILF
CMake NETWORKING

LFN Developer & Testing Forum

¢ Build plugin
No need to link it against VPP libs

— Symbols will be resolved at dlopen() time

Install plugin

In order for VPP to find it, you can:

— Install it in the default plugin folder
(/usr/lib/vpp_plugins)

— Update VPP conf file
(/etc/vppl/startup.conf) and add the
installation folder of your plugin

. CILF
Testlng NETWORKING

LFN Developer & Testing Forum

* Writing unit tests for a VPP plugin may not be trivial

— It works fine only if the tested class does not use VPP data
structure

* VPP data structures are likely not initialized

— The majority of VPP data structs exposed by VPP libs are
initialized by the VPP main executable

— You cannot just use them in your unit tests

CILF
Testing - Example NETWORKING

Developer & Testing Forum

* We want to test a data structure that uses clib_bihash
— https://github.com/FDio/hicn/blob/master/hicn-plugin/src/pcs.h

* clib_bihash is located in libvppinfra, but its memory is
initialized by the vpp main executable

* If we try to use it out of VPP, the program segfaults

https://github.com/FDio/hicn/blob/master/hicn-plugin/src/pcs.h

_ CILF
Testlng NETWORKING

LFN Developer & Testing Forum

°* To make unit testing work, we need to:

— Initialize the memory used by the VPP data structure
— Perform the rest of VPP initialization

* The test framework should do it as a first operation before
running the test suites

— https://github.com/FDio/hicn/blob/master/hicn-plugin/src/test/vpp.c

* Unit tests should be compiled with the same compile options
and definitions of the plugins

— To exploit architecture optimizations

https://github.com/FDio/hicn/blob/master/hicn-plugin/src/test/vpp.c

LILF
NETWORKING

LFN Developer & Testing Forum

Questions? ©

LILF
NE TWORKING

LFN Developer & Testing Forum

