

Bring Akraino/ICN-SDEWAN

into EMCO
Yao, Le

Le, Huifeng

Anti-Trust Policy Notice

• Linux Foundation meetings involve participation by industry competitors, and it

is the intention of the Linux Foundation to conduct all of its activities in

accordance with applicable antitrust and competition laws. It is therefore

extremely important that attendees adhere to meeting agendas, and be aware

of, and not participate in, any activities that are prohibited under applicable US

state, federal or foreign antitrust and competition laws.

• Examples of types of actions that are prohibited at Linux Foundation meetings

and in connection with Linux Foundation activities are described in the Linux

Foundation Antitrust Policy available at

http://www.linuxfoundation.org/antitrustpolicy. If you have questions about these

matters, please contact your company counsel, or if you are a member of the

Linux Foundation, feel free to contact Andrew Updegrove of the firm of Gesmer
Updegrove LLP, which provides legal counsel to the Linux Foundation.

Agenda

• Motivation

• Introduce of SDEWAN

• Design and workflow

• Demo

Motivation

• EMCO is an orchestration of Application and Service,
and DTC controller can only generate base traffic
rules, we bring SDEWAN into EMCO to manage
network communication between clusters

• SDEWAN can setup network topology between
cluster for service and application, it also can deliver
many other network functionalities to EMCO

• SDEWAN is a IPSEC based solution, it can enhance
the network security, also, it can be accelerated by
Intel QAT.

Introduce of SDEWAN

Legacy functionality of SDWAN

Edge first functionality

Edge Native : Inbound connection support; Inbuilt SLB; Use very low resources; SFC for SASE with no changes to CNFs

Software Defined Edge WAN

Multiple WAN link support WAN traffic management

Firewall

SNAT and DNAT

IPsec Traffic Shaping

Cloud Native : SDEWAN as CNFs, K8s CRs for configuration, Observability via Prometheus

Higher Automation : Automation of overlays, Automation of policies to support dynamic apps

Democratization : Open source based; Uses Host Linux;

Acceleration and Security : Key Security, Crypto to address physically insecure edges;

Introduce of SDEWAN

• CNF/CRD Controller: https://www.linkedin.com/pulse/software-defined-edge-wan-edges-srinivasa-addepalli/

• Central Controller: https://www.linkedin.com/pulse/software-defined-edge-wan-central-control-traffic-hub-addepalli/

SDEWAN Central Controller

rsync

Central Cloud

API Router

DeviceObjectManager

DeviceConn
ObjectManager

HubObjectManager

HubConnObjectManager

HubDevice
ObjectManager

IPRange
ObjectManager

OverlayObjectManager

ProposalObjectManager

mongo DB etcd

Edge Location

Traffic Hub

K8s API server

SDEWAN CRD
Controller

SD
EW

A
N

C

N
F

Apply
Rule

CR Change

K8s API server

SDEWAN CRD
Controller

SD
EW

A
N

C

N
F

CR Change

App/us Pod

Apply
Rule

A
p

p
ly

 C
R

Observability
framework

SDEWAN solution components

SD
EW

A
N

C

N
F

https://www.linkedin.com/pulse/software-defined-edge-wan-edges-srinivasa-addepalli/
https://www.linkedin.com/pulse/software-defined-edge-wan-central-control-traffic-hub-addepalli/

EMCO DTC Overview

DTC is EMCO Distributed Traffic Controller used to generate and manage the traffic between EMCO Service and

Application, users can add their own logic to DTC as a sub controller. Currently, DTC has Istio sub controller – its,

service discovery – sds. The following is the architecture of the sub controller in EMCO.

Design Target – SDEWAN Sub controller

• Get the cluster service and application information

• Check the SDEWAN controller status

• Generate Application CR and Service CR
– Application CR

• SNAT to CNF

• Enable firewall traffic to Service

• DNAT Service port to CNF port

– Service CR
• DNAT CNF port to Service port

• Enable firewall traffic from subnet

• Store and apply the CR to EMCO application and Service

SDEWAN Service and Application

Design diagram

Workflow

Demo topo

Demo - setup

Validate Validate the rules generated in SDEWAN CNF and traffic between service and application

Check Check the status of SDEWAN CRs generation (SDEWAN Application and Service)

Deploy Deploy the yaml file using emcoctl into Kubernetes cluster

Configure Configure the EMCO configuration for emcoctl and EMCO services

Update Update application and service helm chart (http-client and http-server in examples)

Pre-requirement Set up Kubernetes cluster and deploy EMCO and SDEWAN

Configuration example

#creating controller entries

version: emco/v2

resourceContext:

anchor: dtc-controllers

metadata :

name: swc

spec:

host: 192.168.121.205

port: 30488

type: "action"

priority: 1

version: emco/v2

resourceContext:

anchor: projects/proj1/composite-

apps/collection-composite-

app/v1/deployment-intent-

groups/collection-deployment-intent-

group/traffic-group-

intents/testdtc/inbound-intents

metadata:

name: serverin

description: description of traffic

intent

userData1: user data 1

userData2: user data 2

spec:

app: http-server

appLabel: app=http-server

serviceName: http-service

port: 3333

dport: 4444

cidr: 192.168.0.0/16

protocol: TCP

sdewanEnable: true

#add the client intent

version: emco/v2

resourceContext:

anchor: projects/proj1/composite-

apps/collection-composite-

app/v1/deployment-intent-

groups/collection-deployment-intent-

group/traffic-group-

intents/testdtc/inbound-

intents/serverin/clients

metadata:

name: client1

description: description of traffic

intent

userData1: user data 1

userData2: user data 2

spec:

app: http-client

appLabel: app=http-client

serviceName: http-client

namespaces: []

cidrs: []

Backup – Central Controller

Modules

• API Router: provides REST API router for SDEWAN Central Controller

• OverlayObjectManager: overlay registration, generate overlay root cert

• HubObjectManager: hub registration and setup hub connection mesh

• DeviceObjectManager: device/cluster registration and setup device connection mesh (if
device has public IP)

• HubDeviceObjectManager: setup connection between hub and device

• IPRangeObjectManager: ip range registration and allocate/free overlay ip for device

• ProposalObjectManager: proposal registration

• DeviceConnManager: only support GET, query connection information of device

• HubConnObjectManager: only support GET, query connection information of hub

• Observability framework: system status monitoring, including connection status, CNF status
etc.

Detail Design : https://wiki.akraino.org/display/AK/SDEWAN+Central+Controller

API Definition: https://github.com/akraino-edge-stack/icn-sdwan/tree/master/central-controller/docs/scc_apis.yaml

Repo : https://github.com/akraino-edge-stack/icn-sdwan/tree/master/central-controller

SDEWAN Central Controller provides central control of SDEWAN overlay networks by automatically configuring the SDEWAN CNFs

through SDEWAN CRD controller located in edge location clusters and hub clusters.

SDEWAN Central Controller

API Router

DeviceObjectManager

DeviceConn
ObjectManager

HubObjectManager

HubConnObjectManager

HubDevice
ObjectManager

IPRange
ObjectManager

OverlayObjectManager

ProposalObjectManager

Observability
framework

sdewan components (to be
done)

sdewan components (done)

https://wiki.akraino.org/display/AK/SDEWAN+Central+Controller
https://github.com/akraino-edge-stack/icn-sdwan/tree/master/central-controller/docs/scc_apis.yaml
https://github.com/akraino-edge-stack/icn-sdwan/tree/master/central-controller

Backup – CRD Controller

Modules

• MWAN3 Controller: monitor mwan3 related CR change then do mwan3
configuration in SDEWAN CNF

• Firewall Controller: monitor firewall related CR change then do firewall configuration
in SDEWAN CNF

• IpSec Controller: monitor ipsec related CR change then do ipsec configuration in
SDEWAN CNF

• Service/Application Controller: configure firewall/NAT rule for in-cluster service and
application

• Runtime controller: collect runtime information of CNF include IPSec, IKE,
firewall/NAT connections, DHCP leases, DNS entries, ARP entries etc..

• BucketPerssion/LabelValidateWebhook: do sdewan CR request permission check
based on CR label and user

SDEWAN CRD Controller is implemented as k8s CRD Controller, it manages CRDs (e.g. Firewall related CRDs, Mwan3 related CRDs and IpSec related

CRDs etc.) and internally calls SDEWAN Restful API to do CNF configuration. And a remote client (e.g. SDEWAN Central Controller) can manage

SDEWAN CNF configuration through creating/updating/deleting SDEWAN CRs.

Detail Design : https://wiki.akraino.org/display/AK/Sdewan+CRD+Controller

Controller and CRD definition: https://github.com/akraino-edge-stack/icn-sdwan/blob/master/platform/crd-ctrlr/examples/sdewan-controller.yaml

CR Samples: https://github.com/akraino-edge-stack/icn-sdwan/tree/master/platform/crd-ctrlr/src/config/samples

Repo : https://github.com/akraino-edge-stack/icn-sdwan/tree/master/platform/crd-ctrlr

K
8s

 A
PI

 S
er

ve
r

SDEWAN CRD Controller

Firewall
Controller

MWAN3
Controller

IpSec
Controller

BucketPermission
Webhook

LabelValidateWeb
hook

SD
EW

A
N

 C
N

Fs

Register Controller
and Webhook

Request Permission
Check

CR Change
Configure/

Query
CNF

Service/
Application
Controller

Runtime
Controller

sdewan components (to be
done)

sdewan components (done)

https://wiki.akraino.org/display/AK/Sdewan+CRD+Controller
https://github.com/akraino-edge-stack/icn-sdwan/blob/master/platform/crd-ctrlr/examples/sdewan-controller.yaml
https://github.com/akraino-edge-stack/icn-sdwan/tree/master/platform/crd-ctrlr/src/config/samples
https://github.com/akraino-edge-stack/icn-sdwan/tree/master/platform/crd-ctrlr

Backup – CNF

Modules

• MWAN3: mwan3 configuration for multiple WAN links’ management

• Firewall: fw3 configuration for firewall rule, NAT rule.

• IpSec: strongswan configuration to setup security tunnel between CNFs

• DNS/DHCP: dnsmasq configuration for DNS and DHCP (ip4) or odhcpd configuration for DHCP
(ip6)

• BGP/OSPF: bird configuration for BGP/OSPF auto routing

• Runtime States: query network function applications to collect runtime information such as
IPSec, IKE, firewall/NAT connections, DHCP leases, DNS entries, ARP entries etc.

• Service: manage (e.g. start, stop, restart etc.) lifecycle of network function applications (e.g.
mwan3, fw3, strongswan etc.)

• Node exporter: Prometheus exporter to export CNF runtime metrics to Prometheus

• Runtime Logs: exports system log for debugging

Detail Design / Rest API : https://wiki.akraino.org/display/AK/SDEWAN+CNF

API Samples: https://github.com/akraino-edge-stack/icn-sdwan/blob/master/platform/test/e2e-test/edge-scripts/sdwan_verifier.sh

Repo : https://github.com/akraino-edge-stack/icn-sdwan/tree/master/platform/cnf

SDEWAN CNF is implemented based on OpenWRT, it enhances OpenWRT Luci web interface with SDEWAN controllers to provide Restful API for

network functions' configuration and control.

Luci

MWAN3 Firewall IpSec
Service

Restful API

SD
EW

A
N

 C
N

F

etc/config/
mwan3

etc/config/
firewall

etc/config/
IpSec

uci r/w uci r/w uci r/w

mwan3 app fw3 app strongswan

uci read uci read

start/stop/restart

openwrt componenbts

sdewan components (to be
done)

SDEWAN CRD Controller

DNS DHCP

etc/config/dhcp

uci r/w

dnsmasq

Runtime
States

odhcpd

uci read uci read uci read

sdewan components (done)

BGP/OSPF

etc/config/
route

bird

uci read

uci r/w uci r/w

query status

Prometheus

SD
EW

A
N

 N
o

d
e

Ex
p

o
rt

er
(R

u
n

ti
m

e
 m

et
ri

cs
)

R
u

n
ti

m
e

Lo

gs

https://wiki.akraino.org/display/AK/SDEWAN+CNF
https://github.com/akraino-edge-stack/icn-sdwan/blob/master/platform/test/e2e-test/edge-scripts/sdwan_verifier.sh
https://github.com/akraino-edge-stack/icn-sdwan/tree/master/platform/cnf

