
Microservice UPF design experience and

interactions with PaaS platform

Qihui Zhao

January 13, 2022

Overview1

Microservice Design of UPF2

PaaS capabilities for cloud native network functions3

Conclusions4

33

Background

➢ Cloud Native is the widely recognized direction of telecom network cloud evolution. Global telecom operators and vendors have

been practicing ever since 2019. Container, microservice, DevOps are popular start points. But there is no standard answer on how

to practice cloud native in real network cloud.

➢ To seek the answer to above question, from October to December 2021, CMCC collaborated with Inspur, completed a cloud native

experiment that covers both microservice design of NF and applying of PaaS platform.

VM
VM

container
Container

CaaS
IaaS

PaaS
LB

Middleware
…

u

u

u

NF2

NF u

u

u

NF1

HW

• Why doing this?

• Going deeply into application lifecycle can help telecom operators know

on which aspects we should involve cloud native.

• Cut in point: NF microservice design and PaaS platform

• The primary object of cloud native evolution is application. It generates

requirements of agility on design/development/delivery/operation process,

while the platform provides capabilities to support those requirements, which

is reflected in the left potential/partial architecture. So, application and

platform are two important and tightly connected points that worth being

researched together.

• Aligned with the goal of XGVela – Telecom PaaS platform for network

cloud /network functions

44

Experiment Overview

NF U-Service

UPF

U-Service

U-Service

PaaS
LB

DB

Monitoring

XGVela-TMaaS

XGVela-CMaaS

➢ The experiment chose UPF as the target NF, which is packaged as containers running on bare metal.

➢ The experiment mainly focuses on the microservice design of UPF, common/reusable capabilities within UPF, and how UPF uses

PaaS.

1. Application Layer：Promote microservice design of UPF

✓ Redesign the monolithic UPF as microservice UPF based on telco

microservice design principle

✓ Pick common and reusable capabilities from UPF microservices, and

put them onto PaaS platform

✓ Microservice UPF integrates capabilities provided by PaaS platform to

achieve complete functionalities

2. Platform Layer：Develop/Verify PaaS capabilities according to

UPF requirements

✓ Develop Telco PaaS capabilities (e.g. LB, DB) to satisfy special

protocol processing requirement and high reliability requirement

✓ Integrate General PaaS capabilities (e.g. Monitoring)

✓ Verifying existing XGVela seed code functionalities (CMaaS and

TMaaS)

Overview1

Microservice Design of UPF2

PaaS capabilities for cloud native network functions3

Conclusions4

66

Microservice Design of UPF

SMF

UPF-U

UPF-PFCPUPF-Exposure UPF-U

UPF-OM

APP/MEC

OMC/
CMP/

NFVO…

gNB DN

UPF-PFCP

Radis KafkaLBManagement & Monitoring
（Topology/ alarm/ configuration……）

SMF

➢ Microservice design of UPF maintains all 3GPP defined interfaces and refers to classical design paradigm of CT applications for

internal functionality block design.

➢ It follows “Single responsibility principle”, and separate UPF functions into three major types: management plane service,

control plane service, and data plane service.

Microservice design principle：

✓ External interfaces follows 3GPP

requirements

✓ Separate microservice into

management plane, control plan

and data plane

✓ Separate interface module and

processing module

✓ Stateless

✓ Use container and K8S

N3 N4
N6

Mp2

77

UPF-U
Data plane service

UPF-Exposure
Capability exposure

UPF-PFCP
Control plane service

SMF

AMF
UPF-OM

Orchestrator

Benefit of Microservice UPF

High availability

Cloud native UPF separates data processing units and data storage. When service

instance fails, the user traffic can be quickly moved to running service instances.

Elastic Deployment

Applications in edge manufacturing industry has different requirements on data

processing delay and throughput. And the compute power on edge is different from

site to site.

Microservice UPF can be orchestrated and dispatched among edge and core sites

based on application requirements and resource conditions.

Customized Service

The separation of interface module and processing module make it easy to create

new services through service combination and new interface creation. AI

PLC

UPF

UPF-U

UPF-U

UPF-U

Data
Data of

application

Service
Migration

Overview1

Microservice Design of UPF2

PaaS capabilities for cloud native network functions3

Conclusions4

• XGVela was launched in Linux

Foundation in April 2020, is

now LFN Sandbox project.

• XGVela aims to construct a

telecom cloud native PaaS

platform

XGVela Overview

1010

Common PaaS Capability derived from Microservice UPF

SMF

UPF-U

UPF-PFCPUPF-Exposure UPF-U

UPF-OM

APP/MEC

OMC/
CMP/

NFVO…

gNB DN

UPF-PFCP

Radis KafkaLB

Management & Monitoring
(Topology/ Performance/ Logging/ Alarm/

Configuration……)

SMF

External System

PaaS Platform

UPF Microservice

Management & Monitoring

✓ Topology, performance, logging, alarm,

configuration……

✓ Highly reusable functions in

development

✓ Provide local & lightweight

management

Messaging

✓ Internal communication between

different microservice instance

High performance DB

✓ Redis cluster to store PDU session

Enhanced LB

✓ Load balancing among microservice

instances

1111

PaaS Capability - Enhanced LB

➢ General load balancer can neither recognize CT protocols like PFCP or GTP, nor stably loadbalance PDU sessions to fixing backend

processing unit based on UE and session features.

➢ Enhanced LB is designed to solve the weaknesses of general load balancer.

UPF microservice

Control Plane API

eLB-
worker

UPF-U

K8S ApiServer

UPF-PFCP

config collect monitor

PFCP

GTPU

Control Plane

Data Plane

PFCP
GTPU

eLB-controller

GTPU

UPF-U

1. eLB control plane: controller monitors k8s for
resource change. When found status change of UPF
instances (creation, deletion, etc.), it will push traffic
rules to eLB-worker.

2. eLB data plane: worker accepts traffic rules from
eLB-controller, and loadbalance UPF user plane data
to UPF-U instance and UPF control plane data to
UPF-PFCP instance.

1212

PaaS Capability – Management & Monitoring

Kubernetes Cluster

Resource

Middleware

Network Function

File system

K8S Node ……

Redis Kafka ……

UPF-U

UPF-PFCP

UPF-Exposure

UPF-OM

Logs (container, system, NF)

Alert
Manager

Alert
Collection

Fault Analysis

Elastic
alert

TMaaS

CMaaS

Log collection

Configuration

NF topology

NF Network TopologyNF performance

Middleware
performance

Resource
performance

Performance
alert

Log
alertTracing

1313

PaaS Capability – Management & Monitoring – Topology(1/4)

Solution 1: General PaaS – Istio + Kiali

Kiali Topology Display

Kiali
Build topology based on inbound

and outbound traffic

External
call

1. Deploy Istio proxy together with UPF microservices as sidecar.

2. Traffic going in and out microservice instance should go

through proxy.

3. Proxy analyze the incoming and outgoing traffic, get the

source IP and destination IP of the traffic and report to Kiali.

4. Kiali analyze the microservice interaction relationship based on

IP information, generate microservice topology and display.

1414

PaaS Capability – Management & Monitoring – Topology(2/4)

Solution 2: Telco PaaS –XGVela TMaaS

1. Developer adds TMaaS annotation to UPF microservice yaml files (Deployment, StatefulSet, CustomerResource, etc.)

2. TMaaS-GW is a k8s client, and listens to the k8s PODs changing EVENT. When it find the EVENT's POD annotations contains NF_ID, NF_TYPE,

NF_SERVICE_ID and NF_SERVICE_TYPE, it will prepare the PodDetails and send it to Kafka.

3. TMaaS listen to KAFKA EVENT’s according to pre-defined TOPIC, and then generate logic topology tree based on PodDetails.

4. Every update of Pod (adding/ deleting) will cause the update of topology tree simultaneously.

1515

PaaS Capability – Management & Monitoring – Topology(3/4)

Solution 2 Demo: Telco PaaS –XGVela TMaaS

1616

PaaS Capability – Management & Monitoring – Topology(4/4)

Solution 1 VS Solution 2

Istio + Kialis TMaaS

Dynamic topology

• Topology is generated based on traffic between microservices.

• If no workload carried and no interactions happened within NF, then

no topology would be generated.

Static topology

• Topology is generated based on pod lifecycle event.

• As long as the status of pod (with annotation) changed, topology can

be updated.

Change the deployment file

• Add proxy as sidecar to UPF deployment files.

• Update iptables.

Change the deployment file

• Add annotation to UPF deployment files.

Protocol sensitive

• As all of UPF traffic will go through proxy, it either requires proxy

can recognize all telco protocol, or only use istio proxy for non-

telco-protocol traffic.

• Existing open-source Istio+Kiali solution cannot provide complete

topology due to protocol limit (PFCP, Diameter, SCTP……).

Protocol insensitive

• Topology is generated through static pod information, whose

description format is standard in K8S, and the format of annotation is

standardized by TMaaS.

Post-topology

• Topology generated through analysis on real-time traffic between

microservices.

Pre-topology

• Topology generated through pre-defined annotations.

➢ TMaaS can help create “static” topology through pod annotations without limitations of protocol recognition.

➢ TMaaS solution and Istio+Kiali solution can be use together to create complete and real-time topology.

1717

PaaS Capability – Management & Monitoring – Configuration(1/3)

CMaaS integration：

➢ UPF-OM implements a configuration API to communicate with CIM

➢ CIM is deployed together with UPF-OM as sidecar

➢ Set UPF configuration through CMaaS northbound API through CLI (e.g. set

the upf interface status or IP of interface)

➢ CMaaS will translate the request body into key-value configmap and store

into etcd

➢ CIM will monitor the configuration change in etcd

➢ CIM will call the UPF-OM configuration API to update configuration

Request
body

data Type Cardinality Remarks

data-key 1
Specifies the data key
Eg：“interfaces”

config-patch 1

config information
Eg：“[{“op”: “replace”, “path”: “/upf-
interfaces/eht0/status”, “value”: “UP”}]

revision 1 revision number

Response

body

status 1 200 ok 4xx error

ProblemDetails 0..1 if status is 4xx

CMaaS northbound API：

Solution: Telco PaaS –XGVela CMaaS

1818

PaaS Capability – Management & Monitoring – Configuration(2/3)

Solution Demo: Telco PaaS –XGVela CMaaS

1919

PaaS Capability – Management & Monitoring – Configuration(3/3)

Advantage of Telco PaaS –XGVela CMaaS

• CNF and uService configuration are stored in ConfigMap.

Addresses Day-0, 1 delivery.

• CMaaS discovers new CNF and configuration changes using k8s

service discovery mechanism.

• On new CNF deployment, loads any management configuration

yang and json from ConfigMap and provisions the NetConf server

module (not implemented yet).

• Day-2 configuration changes are delivered via k8s rolling

update or by direct API calls to application containers via etcd

and CIM per application need.

Overview1

Microservice Design of UPF2

PaaS capabilities for cloud native network functions3

Conclusions4

2121

Conclusion

Microservice related conclusions

1. Telco devices naturally have distributed characteristics. It is good to continually follow the classic NF architecture, which may contain LB, OAM,

storage, processing unit.

2. Designing NF into smaller microservices is also good for service flexibility and new service customization. Microservice design principle can

refer to Page 6.

3. Theoretically, telco operators only care about NF functionalities, interfaces and running status, without caring about internal implementation.

But as potential requirements on precise management and orchestration may emerge in the future, it is possible to standardize some of the NF

implementation, but what should be standardized is not clear.

PaaS related conclusions

1. PaaS, especially open-source PaaS functionalities, can effectively help to simplism NF development and standardize operator management.

2. Currently, four types of PaaS capabilities are common PaaS for NFs. Please refer to page 10 for details.

3. NF logic related PaaS functionalities (LB, DB) usually be integrated at development phase and packaged together with NF image. O&M

functionalities are loosely-coupled with NF logic, can be integrated at development phase while deployed on-demand with independent

images after NF deployment.

4. Telecom protocol, telecom reliability and telecom operating habits are different from IT services, which may require telco enhancement

/implementation on PaaS capabilities.

Whether the above conclusions are right is worth further investigation. If you are interested in researching cloud native evolution of telecom

network cloud, please join us in XGVela and the future experiment.

2222

Thanks!

