

LFN Developer & Testing Forum

LFN Developer & Testing Forum

EMCO: Logical Clouds

Distributed Cloud Manager

Igor D.C. @igordcard @igordc Ritu Sood

EMCO CLI/GUI Distributed Hardware Platform Cluster Distributed Aware Controller **Cloud Manager Application** Registration Traffic Connectivity & Controller scheduler Day2Cfg Generic **Security Controller** Resource Synchronizer & Status Monitoring

Enterprise

Edge

Clouds

Platforms

Network
Edges

Telco CO
Edges

Pub/Pvt
Clouds

- Cluster Registration Controller registers clusters by cluster owners
- Distributed Application Scheduler provides simplified, and extensible placement; tenant mgmt; LCM implementation
- Hardware Platform Aware Controller enables scheduling with auto-discovery of platform features/ capabilities; Others: Cost, Power Savings, Latency aware... (WIP)
- Distributed Cloud Manager presents a single logical cloud from multiple edges
- Traffic Connectivity controller autoconfigure service mesh (ISTIO) and security policy (NAT, firewall), DNS and SLB entities of edges - WIP
- Day2 generic configuration configures
 Day2 configuration of any app/network
 function via templates & configs WIP
- Resource Synchronizer & Monitoring synchronizes resources across multiple edge/cloud platforms and then monitors the status of deployed resources

 Distributed Cloud Manager presents a single logical cloud from multiple edges

Distributed Cloud Manager (DCM)

DCM provides:

The ability to instantiate Logical Clouds,
 i.e. clouds of clouds.

(clouds spanning multiple clusters)

Logical Clouds

Distributed Cloud Manager (DCM)

DCM is one of the key microservices in EMCO.

- Logical Clouds collections of clusters.
 - Geographically disperse
- Multitenancy support.

Abstraction layer for different Cluster APIs.

Main DCM API paths

- /projects/PROJECT/logical-clouds
- /projects/PROJECT/logical-clouds/LC/cluster-references
- /projects/PROJECT/logical-clouds/LC/cluster-references/CR/kubeconfig
- /projects/PROJECT/logical-clouds/LC/cluster-quotas
- /projects/PROJECT/logical-clouds/LC/user-permissions
- /projects/PROJECT/logical-clouds/LC/apply
- /projects/PROJECT/logical-clouds/LC/terminate
- /projects/PROJECT/logical-clouds/LC/status
- /projects/PROJECT/logical-clouds/LC/stop

Types of Logical Clouds

Administrative

Standard

Privileged

Administrative Logical Cloud

 Directly connect the K8s* clusters using credentials provided by the cluster manager microservice.

 Essentially using the default namespace to deploy any resource/application (including additional namespaces).

Standard Logical Cloud

 Resources are installed in the K8s* clusters, starting with Namespace, to create a "partition" of the cluster (and between the clusters) to be used by EMCO.

 Limited applications can be deployed due to constrained access privileges.

Privileged Logical Cloud

- Structure-wise, same as a Standard Logical Cloud.
- However, access privileges are associated to the Logical Cloud (at the namespace and cluster levels), as well as towards other namespaces.
- This allows for a significantly wider range of applications that can be deployed.


```
metadata:
```

name: permission1

spec:

namespace: mynamespace

apiGroups:

- _ ""
- "apps"
- "k8splugin.io"

resources:

- secrets
- pods
- configmaps
- services
- deployments
- resourcebundlestates

verbs:

- get
- watch
- list
- create
- delete

User Permission API resource

(defining this resource automatically promotes the Logical Cloud from **Standard** to **Privileged**)


```
metadata:
    name: myquota
spec:
    limits.cpu: '400'
    limits.memory: 1000Gi
    requests.cpu: '300'
    requests.memory: 900Gi
    requests.storage: 500Gi
    requests.ephemeral-storage: '500'
    limits.ephemeral-storage: '500'
    persistentvolumeclaims: '500'
    pods: '500'
    configmaps: '1000'
    replicationcontrollers: '500'
    resourcequotas: '500'
    services: '500'
    services.loadbalancers: '500'
    services.nodeports: '500'
    secrets: '500'
    count/replicationcontrollers: '500'
```

Cluster Quota API resource

metadata:

name: lccluster1

spec:

clusterProvider: cp1

cluster: cp1-1

metadata:

name: lccluster2

spec:

clusterProvider: cp1

cluster: cp1-2

Cluster Reference API resource

(two of them)


```
metadata:
   name: myprivilegedcloud
spec:
   namespace: mynamespace
   labels:
        x: y
        team: dev
   user:
        userName: user-1
```

type: certificate

Logical Cloud API resource

Demo environment

<see recording>

CSR approval workflow

Future Work

(slide added after the session)

- Supporting more cluster backends (GitOps, etc.)
- Updating logical cloud details: add/remove cluster, permissions, quotas, etc.
- Up to full feature parity with using a K8s cluster directly (such as via kubectl).

Questions

<see recording>

Thank you!

The EMCO development team at Intel ©

https://project-emco.io/

https://gitlab.com/project-emco/core/emco-base

https://wiki.lfnetworking.org/display/EMCO/Welcome+to+the+EMCO+Wiki