

Sylvain Desbureaux

ONAP on Service Mesh
status update

Service Mesh: HLD

HTTPs certificates are on the
ingress

E2E encryption is performed
by ISTIO with mTLS

Component authorization is
performed by ISTIO on the

sidecar

Valid JWT token verification
is done by ISTIO

Sidecars are sending traces
to a Jaeger

If no valid JWT token is
provided, ISITO will redirect

to keycloak auth page

Step one: Certificates(1)

• We “just” deploy ONAP on a namespace where Istio is enabled

• OOM changes:
– Certificates are no more retrieved on the component

deployment/statefulset but set on the Ingress
• Use of cert-manager to manage the certificate lifecycle

• Components change:
– The component disable AAF integration if any
– The component must listen on HTTP/gRPC (no HTTPs)

• Most if not all components are able to do that via configuration change (from
simple to hard)

– The component must talk to other components using HTTP (no HTTPs)
• Latest SDC distribution clients allows HTTP, not older version so you should

upgrade if planning to talk to SDC

Step one: Certificates(2)

• Expected benefits:
– e2e encryption even for internal communication
– Same TLS configuration (allowed TLS versions, allowed

ciphers, …) for all components
– Certificate root choice should be simple with several

way of doing it thanks to cert-manager
– Certificate upgrade doesn’t require new deployment

• What doesn’t change:
– Previous authorization remains (i.e. NBI needs to use

basicAuth to talk to SO as of today for example)

Step one: Certificates

• Istio compatible components:
– Cassandra
– Mariadb
– SDC client is able to run on HTTP
– AAI
– CDS (95% done)
– DMaaP MR
– SDC (95% done)
– SO (80% done)

• Components using http compatible sdc client and being able to disable https for
it

– AAI
– CDS (needs a new release but works with “latest” version)
– SDNC (needs a new release but should work with “latest” version)
– SO

Step two: Authorization (1)

• On top of step 1, we create “AuthorizationPolicy”1 that will
authorize some components to talk to others

– For example, Only SO and ESR should be able to initiate request on
Multicloud (just an example, it may not be the case)

• OOM changes:
– The AuthorizationPolicy resources must be created
– Specific service account per subcomponent must be created (Authorization

policy works with them)

• Components change:
– The component disables MSB integration if any (MSB breaks the ”line of

trust”)
– The internal only component disables its “basicAuth” if it has one (see next

slide)
1: https://istio.io/docs/reference/config/security/authorization-policy/

https://istio.io/docs/reference/config/security/authorization-policy/

What does mean “The component disables its
“basicAuth” if it has one” in term of code

• It will depend obviously on how each projects are behaving

• For SO, it would imply to use
https://github.com/onap/so/blob/master/common/src/main/java/org/onap/so/sec
urity/SoNoAuthWebSecurityConfigurerAdapter.java as security adapter

– It’s used in “test” and “aaf” profile so I guess a new profile (“serviceMesh”) should be
created

• For SDC, it would mean to create a new filter here
(https://github.com/onap/sdc/tree/master/catalog-
be/src/main/java/org/openecomp/sdc/be/filters) I guess

• For AAI “traversal”, it would also mean to create an interceptor associated to the
a new profile here https://github.com/onap/aai-traversal/tree/master/aai-
traversal/src/main/java/org/onap/aai/interceptors/pre I guess

https://github.com/onap/so/blob/master/common/src/main/java/org/onap/so/security/SoNoAuthWebSecurityConfigurerAdapter.java
https://github.com/onap/sdc/tree/master/catalog-be/src/main/java/org/openecomp/sdc/be/filters
https://github.com/onap/aai-traversal/tree/master/aai-traversal/src/main/java/org/onap/aai/interceptors/pre

Step two: Authorization (2)

• Expected benefits:
– Component Authorization for all components
– Centralized management of Authorization, which can

simplify security audit
– AuthorizationPolicy can be very specific (I allow SO to do

only GET or POST to /stuff only) and so we can have a
better security than today (“healthcheck” user can do
anything he wants on policy)

• What doesn’t change:
– External access is still based on basic Auth or “open bar”

as of today

Step one: Authorization

• All supported components have a service
account il all their workloads

• SO has a specific profile in order to
disable basic authentication

Step three: simple RBAC (1)

• On top of step 2, we also add JWT configuration on “AuthorizationPolicy”1 that
will authorize some user to access the components

– If the user has not a valid authentication token, it gets forwarded to keycloak
authentication portal to retrieve it.

• OOM changes:
– The AuthorizationPolicy resources must be created
– ISTIO must be configured to accept external traffic with a valid JWT token
– ISTIO must be configured to redirect to auth portal if no auth token or bad one is

present
– Keycloak must be configured with right users / authorization

• Components change:
– None from step 2 perspective
– The components with external access disable its “basicAuth” if it has one (same as

step 2 for internal only components)

Step three: simple RBAC (2)

• Expected benefits:
– Centralized User Management (but with a rather simple OK /

NOK)
– External User Management (we can plug directly OpenID connect

compatible IAM or LDAP/SAML IAM via Keycloak)

• What doesn’t change:
– User access authorization is only performed on the first

component (NBI, VID, UUI, …)
• If User is granted, NBI will use its own AuthorizationPolicy with SO / AAI

and so every allowed NBI users will be authorized for everything (Cannot
read only AAI for user X and service create for user Y).

– Some User grant can be provided according to the path but not to
the body

Step three: simple RBAC

• PoC with Istio / keycloak / oauth2-proxy
and “simple” services has been performed

• Services used
– Kiali (auth only)
– Grafana (auth + group mapping)
– Httpbin (auth only)

Step four: full RBAC (1)

• On top of Step 3, component retrieve JWT token and:
– Use it to check if user has right to perform the wanted action (if needed)
– Add it to “south” request headers so next component can check if the client has the

right to perform (NBI pass to SO which will ultimately pass it to Multicloud, so
Multicloud can verify that this specific user has the right on this cloud)

• OOM changes:
– None from step 3 perspective

• Components change:
– The component retrieves JWT token header (see next slide)
– The component verify that action is allowed according to this token (optional)
– The component add Authorization header to the ”south” HTTP requests he’s doing

(see next next slide)

What does mean “The component retrieves JWT
token header ” in term of code

• It will depend obviously on how each projects are behaving
but it’s roughly the same than retrieving basic Auth header

• For spring boot code, it’s something like:
public String someMethod(@RequestHeader("Authorization") String token) {}1
public String someMethod(@RequestHeader("X-Auth-Request-Access-Token") String token) {}1

– Obviously, an interceptor can be made and handle this part on
every requests

• For python flask code, it’s something like:
from flask import request
request.headers.get('your-header-name’)2
request.headers.get(' X-Auth-Request-Access-Token’)2

1: https://www.baeldung.com/spring-rest-http-headers
2: https://flask.palletsprojects.com/en/1.1.x/quickstart/#accessing-request-data

https://www.baeldung.com/spring-rest-http-headers
https://flask.palletsprojects.com/en/1.1.x/quickstart/

What does mean “The component add Authorization
header to the ”south” HTTP requests he’s doing” in term
of code

• Again, it’ll depend on implementation

• On spring boot, an interceptor / filter can do that for you (some
examples here:
https://stackoverflow.com/questions/46729203/propagate-http-
header-jwt-token-over-services-using-spring-rest-template)

• If you’re using a ”client” (sdc client, so client, …), then the client
must be able to add some headers on the request (if the client use
RestTemplate from Spring Boot, not sure if possible, you
interceptor/filter will do the job for you)

• On Python request, it’s just adding the header

https://stackoverflow.com/questions/46729203/propagate-http-header-jwt-token-over-services-using-spring-rest-template

Step four: full RBAC (2)

• Expected benefits:
– Real RBAC (user propagation allows to verify it

has the right to end component and not only the
first).

– We can create several profiles (admin, designer,
serviceOwner, …) and components can rely on
them know if the user has the rights to perform the
intended actions

– We can start “low” (YES/NO approach per profile)
and go deeper (user X has no right on resource Y),
allowing us to be multi tenant

Step four: full RBAC

• SO is handling Authorization headers
retrieval and pass to the next components
– It’ll have to be changed to retrieve the token

and generate the authorization header

Cherry on the cake: tracing (1)

• Tracing is enabled by default when ISTIO is started.
• But ISTIO has no clue that south request is part of a bigger

request
• We must then “help him” to do that

• OOM changes:
– None from step 4 perspective

• Components change:
– The component retrieves “B3” headers (https://github.com/openzipkin/b3-

propagation) (see next slide)
– The component add these headers to the ”south” HTTP requests he’s

doing

https://github.com/openzipkin/b3-propagation

What does mean “The component retrieves “B3”
headers” in term of code

• It’s the same that for JWT token, except for
– Spring boot:

• Spring Boot Sleuth (https://spring.io/projects/spring-cloud-
sleuth) can handle this for you (and add them to south
request if RestTemplate is used)

• It will also add the request/span into the logs, for better
understand of the logs

– Go
• https://github.com/openzipkin/zipkin-go/propagation/b3 may

help you

• So the « cost » of such feature is very low

https://spring.io/projects/spring-cloud-sleuth

Cherry on the cake: tracing (2)

• Expected benefits
– E2e tracing will help to find bottlenecks
– Added to logging, we can also have e2e logs

(find why NBI creation had an issue on SDN-C
preload may be tricky today for example)

Cherry on the cake: tracing

• SO is propagating the header in its core
components

Conclusion

• Works is advancing at slow pace but it’s
advancing

• We can hope for service onboarding and
creation for Jakarta with service mesh
(and start on Authorization)

Thanks

New user ONAP access desired call flow

ComponentIstio Sidecar
Component KeycloakOauth2

ProxyGatewayIstio Sidecar
Gateway

ONAP Components External
Components

”I want to access
https://component.api.simpledemo.onap.org/”

Component.api.simpledemo.onap.org is resolved using gateway IP address

GET https://component.api.simpledemo.onap.org
_oauth2_proxy present? No

302 Redirect https://keycloak/login

Auth Page
POST https://keycloak/login

Credentials
valid? Yes

302 Redirect https://component.api.simpledemo.onap.org/oauth2/callback

Valid JWT token? Yes

302 Redirect https://component.api.simpledemo.onap.org/

component.api.simpledemo.onap.org service? component

JWT Authorized? yes

HTML content

Authorization

Authentication

Valid JWT token? Yes

Already connected user ONAP access
desired call flow

ComponentIstio Sidecar
Component KeycloakOauth2

ProxyGatewayIstio Sidecar
Gateway

ONAP Components External
Components

”I want to access
https://component.api.simpledemo.onap.org/”

Component.api.simpledemo.onap.org is resolved using gateway IP address

GET https://component.api.simpledemo.onap.org
_oauth2_proxy present? Yes
Valid JWT token? Yes

component.api.simpledemo.onap.org service? component

JWT Authorized? yes

HTML content

Authentication

Authorization

Already connected user ONAP access desired call flow with subcomponent

Componen
t

Istio
Sidecar

Componen
t

Oauth2
Proxy

Gatewa
y

Istio
Sidecar

Gateway

ONAP Components

”I want to access
https://component.api.simpledemo.onap.org/”

Component.api.simpledemo.onap.org is resolved using gateway IP address

GET https://component.api.simpledemo.onap.org
_oauth2_proxy present? Yes
Valid JWT token? Yes

component.api.simpledemo.onap.org service? component

JWT Authorized? yes

HTML content

Authentication

Authorization

Sub
Componen

t

Istio
Sidecar

Componen
t

Authorized? yes

Can Be JWT, specific stuff
on JWT, Service Account,

Namespace, …

