

Byung-Woo Jun (Ericsson)
Michael Morris, Andre Schmid (Ericsson)
Marian Darula, Zu Qiang (Ericsson)

ASD App Package
Management

Onboarding and LCM Orchestration

• ASD App package (focus on NF) onboarding to SDC
– Onboard vendor ASD App Packages and the package validation
– Manage large-size ASD App packages (i.e., handling large-size images)
– Transform onboarding ASD models & packages into internal ONAP models & packages

• SDC Resource and Service Design with ASD-aligned CNF resources
– Add additional artifacts such as vendor licensing models
– Allow SDC designers to define class-level ASD input parameters add custom properties

• Service CSAR with ASD resources distribution to ONAP Runtime components
– Keep the SDC pull distribution pattern
– Distribute ASD Service CSAR to participating ONAP runtime components (notifications & querying)
– Enhance ONAP Catalog Manager to do the following:

• Store enhanced/internal ASD Descriptors and packages in the Catalog Repository
• Store Helm Charts in the Helm Chart Repository
• Store Images in the Image Repository

• SO Model-driven Orchestration for ASD-aligned CNFs (and NSs in the future)
– Select ASD workflows (invoking CNF Manager) based on models, metadata and/or request types

• Enhance SO model-driven orchestration for ASD-CNF
– Demonstrate how ASD, input parameters and Helm Charts are processed by a new SO plugin (CNF Manager)

• Resolve K8 resources based on input parameters and Cloud Artifacts
• Get placement decisions by leveraging ONAP platform capabilities (OOM is a future consideration)
• Decompose ASD (VF) into deployment Items (vf-modules) and deploy each deployment item (vf-module) to Kubernetes thru

SO CNF Adapter; some dry-run would be executed based ASD parameters to avoid deployment failure
• Support ASD-level (VF-level) topology (CNF and sub-resources) by leveraging CNF Manager

1. OSS/BSS onboards vendor ASD App packages, which include ASD,
signature and certificate, to ONAP thru SDC.
A. For the ASD and Package specification proposal, see

https://wiki.lfnetworking.org/display/LN/2022-01-12+-
+ONAP%3A+Application+Service+Descriptor+%28ASD%29+for+K8s+NFs

2. SDC validates onboarding ASD App packages. After then, SDC goes thru
its onboarding process – see the subsequent slide page for details.

3. SDC designers can enhance ASD by adding/updating additional artifacts
and customizing values.

4. Once the onboarded ASD App packages are tested and certified, SDC
sends App pkg notifications thru DMaaP – SDC keeps its ”pull” distribution
pattern.

5. Catalog Manager queries ASD App package from SDC and distribute:
A. ASD and ASD’ CSAR to the Catalog Repository
B. Helm Charts to the Helm Artifact Repository
C. Images to the Image Artifact Repository

6. SDC Service CSAR is distributed to other participating ONAP runtime
components, such as SO, AAI, MultiCloud, Policy, SDC, etc.

7. CNF Manager (or others) retrieves ASD/ASD’ from the Catalog Manager.
8. CNF Manager (or others) retrieves associated Helm Charts from the Helm

Artifact Repository.
9. K8S (CISM, CIS) retrieves image info and images from the Image Artifact

Repository.

https://wiki.lfnetworking.org/display/LN/2022-01-12+-+ONAP%3A+Application+Service+Descriptor+%28ASD%29+for+K8s+NFs

SDC component manages ASD App Package
onboarding and distribution.
1. The ASD App package is compliant to the ETSI

NFV SOL004 CSAR structure with some
extensions.
A. The ASD App package has new “ASD”

specific metadata, which is used for making
orchestration path decisions.

2. SDC generates its internal “VSP” CSAR file,
based on the onboarded ASD App Package.
A. SDC adds additional info, including vendor

license model.
3. Then, SDC generates Resource (VF) CSAR,

based on the corresponding VSP.
A. ASD-specific metadata is copied into the

specific files, which will be used by Runtime
components.

B. Onboarded ASD models are mapped into
the ONAP internal models; ASD <-> ONAP
VF, DeploymentItems <-> VF-Modules).

4. SDC creates Service CSAR by adding
resource(s) into the Service Model.

5. SDC distributes the Service CSAR to ONAP
runtime components thru DMaaP (pull pattern)

1 42 3

5

SDC Internal Process

• ETSI VNFD does not have its sub-structure to correspond to ONAP vf-module
– During mapping, vf-module could be deuced based on the VNFD policies<scaling_aspects>properties>aspect, this mapping is not yet

realized for its complexity; current ONAP ETSI-Alignment supports VNF and above, not vf-module, by leveraging external components
– There are some issues to support closed loop (healing and scaling) that are run by ONAP components

• In ASD, there is the deploymentItems (1..N) under the ASD, and each deploymentItem would be mapped to the vf-module by SDC to minimize
impact on existing ONAP components

• SDC VF and vf-module will be corresponded to AAI generic-vnf and vf-module, accordingly for runtime instance representation (like CNFO)

VNFD
(policy >

scaling_aspe
ct>properties

>aspect)

ETSI

ASD

DeploymentItemDeploymentItems

ASD

Vf-Module(s)

1

m

VF

Deploymen
tItemVf-Module

SDC

1

m

Generic_vnf

Deploymen
tItemVf-Module

AAI

1

m

ASD = VF
DeoploymentItem = VF-Module

VF = VNF/generic_vnf (CNF)
VF-Module = VF-Module
VF-Module contains V-Server(s)
VNF (CNF) contains K8S-RES

runtime viewonboarding view

1. ASD App package is onboarded to SDC
i. if image(s) are large (> 2M), stores them to some

Object Storage (TBD)
ii. SDC changes embedded Image(s) to Image

references in the package
2. SDC sends the ASD App package notification to

DMaaP
3. DMaaP participating components get the

notification and query ASD App package from
SDC

Catalog Manager processor performs the following:
4. Queries ASD App packages including all the

artifacts
5. Stores ASD packages to Catalog Repository
6. Stores Helm Artifacts to Helm Artifact Repository
7. Triggers Image Artifact store
8. Image Artifact is stored to the Image Artifact

Repository by Catalog Manager

Note: Catalog Manager can provide CRUDQ APIs for
ASD App Packages

Keep SDC pull distribution pattern

• An ASD App package could represent complex applications,
which consist of multiple deployment items/Helm Charts/Images
– 1 ASD contains 1..N DeploymentItems
– In order to support complex applications that require multiple

artifacts (like Helm charts) to be installed in a particular order
– ASD App Orchestrator (SO CNF Manager) manages

chaining of these artifacts, based on the deploymentOrder
• Each deployment item corresponds to a Helm Chart.
• Each Helm Chart corresponds to a docker image.

ASD

Helm Chart

deploymentItemsdeploymentItems

Docker Image

Helm Chart

Docker Image

…
1

1

1

1

1
1

1

1

1

N N N

note: Information Models are shown here for illustration purposes.
The corresponding ASD data models are available at
https://wiki.onap.org/display/DW/Application+Service+Descriptor+%
28ASD%29+Resource+Data+Model

https://wiki.onap.org/display/DW/Application+Service+Descriptor+%28ASD%29+Resource+Data+Model

• ASD Data Model (https://wiki.onap.org/display/DW/Application+Service+Descriptor+%28ASD%29+Resource+Data+Model)
• During onboarding, SDC transforms this Data Model into SDC Data Model

https://wiki.onap.org/display/DW/Application+Service+Descriptor+%28ASD%29+Resource+Data+Model

• The org.onap.asd.CNF properties are defined in the nodes.yaml (A)
• node template added for the ASD type generated based on the

definition in the onboarded ASD model (B)
• Set the “type” in the asd_instance indicates ASD (e.g., type: ASD) by

leveraging the ASD package metadata (C)
– entry_definition_type: [asd]
– A few options are under discussion to identify the ASD App package

type
• ASD deploymentItem(s) are transformed into group(s) in the

resource template yml, and the group is represented by vfModule
(D)
– deploymentItem = vfModule

• Could extend the org.openecomp.groups.VfModule to hold the
DeploymentItems properties, such as deployment_order and
lifecycle parameters (E)

• Helm Charts will be added to Artifacts/Deployment/HELM (like what
is done today for onap zip cnf packages) (F)

• Image files will be added to Artifacts/Deployment/IMAGE (G)

C

A

B

E

D

F

G

1. A deployment order is received, along with the
required lifecycleParameters values

2. The cloud-native deployment tool is invoked with the
received parameters to transform the cloud artifacts
into K8S resource descriptions.

3. The K8S resource descriptions, ASD and any other
relevant data is sent to the placement function

4. Placement decision is done based on input data
5. Inform deployment of placement
6. Request the cloud native deployment tool to deploy

on the identified target cluster
7. Cloud native deployment tool deploys application in

the chosen cluster using the K8S API.

<source: ASD for K8S NFs, https://wiki.lfnetworking.org/display/LN/2022-01-12+-
+ONAP%3A+Application+Service+Descriptor+%28ASD%29+for+K8s+NFs >

https://wiki.lfnetworking.org/display/LN/2022-01-12+-+ONAP%3A+Application+Service+Descriptor+%28ASD%29+for+K8s+NFs

• Requirements (https://jira.onap.org/browse/REQ-1043)
– Support for provisioning ASD-based CNFs using ONAP platform and external K8S

Manager
– Leverage SO and new SO plugin capabilities for ASD- and Helm-based CNF

orchestration
– Limit ASD and Helm Chart exposures to existing ONAP runtime orchestration

components; i.e., make ASD and Helm Chart transparent to most of the ONAP
components

• Proposed Process
– SO gets the ASD-based CNF package from SDC and stores its metadata to its

Catalog DB;
• like current ETSI-Alignment, SO does not need to understand ASD and Helm Chart

details
– To decide orchestration flows, SO processes ASD model info, metadata and

incoming request parameters
• Decomposes a Service into VF resource(s); if NSD (or equivalence) is used, SO

NFVO can be leveraged to handle NS (out-of-scope from the initial PoC)
• If VF resource metadata indicates ASD-based VF, SO chooses the ASD-CNF

workflows
– SO launches ASD-CNF orchestration workflows and delegates ASD-CNF

orchestration to a new SO plugin, SO CNF Manager (CNFM)
• Passes ASD references along with input parameters
• Use of CBA and CDS is future consideration (like CNFO). Currently, SO clients

need to provide instance-level input parameters that are defined in the ASD and
DeploymentItems

– SO creates instances to AAI, by leveraging existing AAI VF and VF-Module schema

https://jira.onap.org/browse/REQ-1043

• ASD App package contains the package
metadata.

• One of the metadata indicates the package type;
entry_definition_type: asd
– This is a required metadata

• During the ASD App package onboarding, SDC
copies the metadata into the Resource VF.

• Resource VF(s) will be added to a Service CSAR
for distribution.

• SO stores the Service CSAR into its Catalog DB;
only necessary metadata will be stored
– SO does not need to understand ASD and

Helm Charts fully
– Only ASD App metadata would be necessary

(TBD)
• SO decomposes a service into resource VF(s)
• per resource VF, SO reads the corresponding

metadata and determines a proper workflows
– For the ASD case, SO will invoke SO CNF

Manager
– Most of existing SO workflows will be reused

SO

ASD App package
metadata:
application_name: vCU
application_provider: Ericsson
release_date_time: 2021-10-21T11:30:00+05:00
entry_definition_type: asd

Resource VF
(stores the
“entry_definition_type: asd”
indication/flag)
note: a few options are
under discussion where we
put this metada

Service CSAR

Resource
VF

X

ETSI Workflow

ASD Workflow

CNF Workflow

If Resource VF
indicates ASD

If onboarded pkg
Contains etsi

If CSAR contains
Helm type

- decompose a service into resource(s)
- per resource VF, reads metadata

- SO stores Service CSAR into its Catalog DB
- only necessary metadata will be stored

Other existing
Workflows

Other conditions

• SDC Controller saves Service CSAR into SO Catalog DB
• Per VF resource, SO BPMN Infra invokes SO CNFM for ASD

instance orchestration (A)
• SO CNFM processes ASD-based CNF lifecycle orchestration

(support ASD-level topology including vf-modules)
• for NS, SO can invoke SO NFVO per NS resource (out of

scope from the initial PoC) thru the SOL005 Adapter
• SO CNFM processes ASD instance lifecycle (B)

– Gets an ASD App onboarded package that is stored in the
Catalog Repository

– Gets associated Helm Chart(s) that are stored in the Helm
Artifact Repository

– Processes ASD deployment artifacts (each deployment artifact =
a Helm Chart)

– Per deployment artifact, constructs a new customized Helm Chart
values file, based on 1) instance-specific incoming parameter
values, 2) default values from ASD and 3) Helm Chart

– Transforms ASD cloud artifacts into K8S resource descriptions
– Gets a placement decision (e.g., target cluster) from the

placement function (e.g., OOF)
– Thru the SO CNF Adapter, sends request(s) to K8S to deploy

ASD instance(s) on the target cluster
– SO CNF Adapter invokes MultiCloud K8S plugin or EMCO (in the

future); if EMCO is used, CNF adapter may need to be handle at
the ASD-level (and also SO CNFM will be adjusted as needed).

Note: Use of CBA/CDS is a future consideration (plan to
collaborate with CNFO)

A

B

• SO CNF Manager creates new Helm Chart
instance values based on input from:
1. Request Input parameter thru SO, based

on the ASD lifecycle Parameter

2. ASD default
3. Default Helm Chart Values

• Leveraging generated Helm Chart instance
values (file), SO CNF Manager invokes ASD-
CNF deployment towards K8S thru SO CNF
Adapter

• Use of CBA/CDS for input parameter
assignment is a future consideration (plan to
collaborate with CNFO)

based on the list of
customizable

parameters that is
defined in the

ASD>deploymentItem>l
ifecycleParameters, SO

client can formulate
the customized

parameters in the
request

• ASD-CNF Orchestration leverages AAI models which are
proposed/developed by CNFO.

• Accordingly, this PoC will share the same limitation and
enhancement path with CNFO.
– Collaboration effort between ASD PoC and CNFO will be

arranged
• SDC transforms ASD models to SDC internal models to

reduce impact to ONAP components, including AAI.

<source: CNFO presentation: https://wiki.lfnetworking.org/display/LN/2022-01-11+-+ONAP%3A+CNF+Orchestration+Tutorial >

https://wiki.lfnetworking.org/display/LN/2022-01-11+-+ONAP%3A+CNF+Orchestration+Tutorial

• ASD App Package onboarding to SDC
– Manage large-size ASD App package in SDC
– Mapping between ASD and ONAP Resource VF

• ASD Package distribution
– Store ASD and ASD’ package to the runtime Catalog Repository
– Store Helm Chart(s) to the runtime Helm Artifact Repository
– Store Image(s) to the runtime Image Artifact Repository

• Deploy/Instantiate ASD package to K8S
– Support SO Model-Driven orchestration
– Delegate ASD/HelmChart handling (instantiation) to SO CNF Manager
– Input parameters handling based request input and Helm Chart default

• Future Considerations
– Day 2 Configuration – future consideration
– ASD CNF Upgrade Support – future consideration, but plan to collaborate with CNFO
– Policy & CLAMP support – future consideration
– Integration with external K8S orchestrators (e.g., EMCO) – future consideration
– leverage with CBA/CDS for assignment – future consideration
– On-Demand healthcheck could be supported by leveraging SO REST API (like CNFO)

