

Pawel Pawlak, F5
Amy Zwarico, AT&T
Tony Hansen, AT&T
Muddasar Ahmed, MITRE
Robert Heinemann, MITRE
Byung-Woo Jun, Ericsson

ONAP Security
Jakarta Global Requirements and Best Practices

• Initiatives
– Standardized feature intake templates
– Software Bill of Material (SBOM)

• Best Practices
– Standardized fields for logging for security [REQ-1072]
– Using basic image from Integration [REQ-1073]

• Global Requirements
– ONAP Applications to log to STDOUT and STDERR [REQ-441 -> [REQ-1070]
– Completion of Python Language Update (v2.7 → v3.8) [REQ-437 -> REQ-800 -> REQ-1067]
– Completion of JAVA Language Update (v8 → v11) [REQ-438 -> REQ-801 -> REQ-1068]
– Continuation of Packages Upgrades in Direct Dependencies [REQ-439 -> REQ-863 -> REQ-1066]
– Continuation of Best Practices Badging* Score Improvements for Silver Level [REQ-443 -> REQ-1069]

*Please note the new naming for CII Badge is : “OpenSSF Best Practices Badge”

https://jira.onap.org/browse/REQ-1072
https://jira.onap.org/browse/REQ-1073
https://jira.onap.org/browse/REQ-441
https://jira.onap.org/browse/REQ-1070
https://jira.onap.org/browse/REQ-437
https://jira.onap.org/browse/REQ-800
https://jira.onap.org/browse/REQ-1067
https://jira.onap.org/browse/REQ-438
https://jira.onap.org/browse/REQ-801
https://jira.onap.org/browse/REQ-1068
https://jira.onap.org/browse/REQ-439
https://jira.onap.org/browse/REQ-863
https://jira.onap.org/browse/REQ-1066
https://jira.onap.org/browse/REQ-443
https://jira.onap.org/browse/REQ-1069

• ONAP has a central position in the
orchestration chain of the network.

• For a country or an operator, the loss
of control of ONAP would have a
devastating impact.

• To reduce threats, there are several
levers: code quality, strong
authentication, flow protected, etc...

4

ONAP MDONS Architecture example
Through ONAP, the hacker could have the control to the network

Logging is one of these levers

Logging the right data is critical downstream to enable effective analytics
&

Only for ONAP Platform Components NOT for services orchestrated by ONAP.

Collection Monitoring

AlertingGeneration

• Operation / infrastructure teams need data to develop good security analytics.

• Challenge is to understand and anticipate what data is needed to enable those
teams.

• We reviewed v9 of SECCOM container logging requirements to determine if
additional requirements should be proposed to support security analytics.

• Our approach was to systemically review the v9 logging requirements against the
Containers Matrix for ATT&CK® (v9) to identify gaps.

The Containers Matrix provides a list of attacker techniques that provides a
convenient tool to identify data needed to craft good security analytics.

7

Can detect event with current proposed requirements.

Requirements partially address but need more data to detect.

Requirements do not address at all.

Outside of scope for logging.
About 36% of the Matrix is addressed by the
SECCOM Container Logging Requirements

• The adversary techniques listed discuss events types and log data
generated from more that just the container application.

• The pod, node (Docker) and orchestrator (K8S) are also listed.
• After systematically going through each adversary technique 5

new logging requirements were developed to address gaps.
• All proposed logging requirements are at the Docker and K8S

level.
• K8S, Image Registry, and Docker daemon logs should be planned

to be aggregated.
• This will allow for upwards of 85% coverage of the ATT&CK®

Containers Matrix.

8

No new requirements at the Container Application level based on gap analysis.

Existing Fields Recommended
EELF BeginTimestamp OR

Timestamp RequestID Service /
Program

Name
StatusCode

Category
log level

Severity
detailMessage

LogSpec LogTimestamp TransactionID level p_message p_marker User

Container Image
Name / Tag

Container Image
Digest

Container ID Container Name Role / Attribute ID Protocol

New Fields Recommended

*The security basis for these log field recommendations have been derived from ONAP’s VNF
security requirements and MITRE’s ATT&CK® Container’s Matrix.

15 fields total:
• 9 of 15 fields exist within the structures defined in EELF and Log Spec v1.2.
• Other 6 fields identify properties about the container itself.

• ONAP logging architecture separates log generation from the log collection/aggregation/
persistence/visualization.

• An ONAP application should not concern itself with routing or storage of its output stream.

• Each ONAP running process writes its log data to STDOUT or STDERR.

• Archival destinations should not be visible to or configurable by the ONAP applications
(separation of concerns, security reasons).

• Transferring transient local log data in the ONAP containers to the separate and centralized (or
even distributed) long-term log storage is a must for security, persistent and aggregation reasons.

• ONAP supports and leverages open-source and/or standard-based logging framework for
integration, extensibility and customization.

• ONAP provides logging reference implementation and allows the logging component stack is
realized by choices of vendors.

• ONAP supports open-source- and standard-based Logging
architecture, separating log generation from the log collection/
aggregation/persistence/visualization.

• All ONAP components push their logs into STDOUT/STDERR, so any
standard log pipe can work on the logs.
• Allowing the logging component stack is realized by choices of

vendors
• ONAP provides a reference implementation/choice

• ONAP logs will be exported to a different and centralized location for
security, persistent and aggregation reasons
• Log collector sends logs to the aggregator in a different container
• Aggregator sends logs to the centralized database in a different

container
• Logging Functional Blocks:

• Collector/forwarder (one per K8S node)
• Aggregator (few per K8S cluster)
• Database (one per K8S cluster) – could use multiple PODs for HA
• Visualization (one per K8S cluster)

• ONAP reference implementation choice:
• EFK: Elastic Search, FluentBit, FluentD, Kibana

• ONAP logging conforms to SECCOM Container Logging requirements
• Standardized Logging Fields that are proposed as a best practice,

plus recommended container metadata
• https://wiki.onap.org/display/DW/Jakarta+Best+Practice+Proposal+

for+Standardized+Logging+Fields

Note 1: all inter-component communication is secure, by leveraging service-mesh (preferred solution)
Note 2: a solution is under discussion against root access for the DaemonSet (or equivalent) configuration to

make FluentBit run as non-root users

https://wiki.onap.org/display/DW/Jakarta+Best+Practice+Proposal+for+Standardized+Logging+Fields

ONAP provides reference implementation, but the implementation can be
overwritten by vendors, by leveraging their own logging stack

As a log collector/forwarder, FluentBit (node-level logging agent) needs to be
run on every node to collect logs from every POD; one way is FluentBit is
deployed as a DaemonSet (i.e., its POD that runs on every node of the cluster).
• Configure to run applications as non-root users

• When FluentBit runs, it will read,
parse and filter the logs of every
POD and could enrich each entry
with the following information
(metadata):
• POD Name & ID
• Container Name & ID
• Labels & Annotations
• Others

• To obtain this information, a
FluentBit built-in filter plugin
called “Kubernetes” talks to the
Kubernetes API server to retrieve
relevant information. All of this is
handled automatically, no
intervention is required from a
configuration aspect.

• Fluentd acts as the logging aggregator for log events from FluentBit.
• FluentBit and FluentD communication could be configured for secure

communication (mTLS) – use of Service Mesh is the preferred choice.
• ElasticSearch is for a centralized log data indexing and storage.
• Kibana is used for log data visualization.

