
01/13/2022

VNF Life Cycle Management

with EMCO and KubeVirt
Kuralamudhan Ramakrishnan,

kuralamudhan.ramakrishnan@intel.com

Todd Malsbary, todd.malsbary@intel.com

mailto:kuralamudhan.ramakrishnan@intel.com
mailto:todd.malsbary@intel.com

Cloud Native Evolution

Monolith

Monolith
VM

Containers

Micro-services

T
o

d
a

y
E

m
e

rg
in

g

Hindsight
What Happened

Virtualize Physical Appliances

Automated;
Secure; Flexible;

Performant;
Resilient;

Containers Baremetal
Deployment Model

LF Networking 2

Cloud Native Evolution

Monolith

Monolith
VM

Containers

Micro-services

T
o

d
a

y
E

m
e

rg
in

g

Hindsight
What Happened

VM & Container coexist

Automated;
Secure; Flexible;

Performant;
Resilient;

LF Networking 3

Integrated Cloud Native stack

Hardware

S1 S2 S3

Host Operating System

Ubuntu

Tuned for eBPF and XDP

KubernetesK8S App Components
ISTIO MetalLB
KATA

Flannel,OVN
CollectD

Prometheus
OpenEBS

NFV Specific components
Multus PMEM CSI

DPDKNFD

Numa MgrIntel

Accelerator

plugin

EMCO

MC – K8S Plugin Service
(Instantiation, Day0, Day2 config)

Slice Mgr Multi-Site scheduler

Multi -Tenant Mgr Edge Label Mgr

K8S HPA

Use cases/Apps
CNFs

Infrastructure Provisioning & Configuration

ClusterAPI

Ironic

Rook

knative

Local Controller

PaaS (MEX)

OVS DPDK

Analytics framework

Data Lake

Training

Model Repo

Messaging

Inferencing

Upstream communities: Akraino LF Edge, CNCF projects ,LF

Networking, FD.IO, DPDK, Linux, OVS, Many ASF projects,

Intel Open Source

E
d

g
e

 l
o

c
a

ti
o

n
C

e
n

tr
a

l/
R

e
g

io
n

a
l

lo
c
a

ti
o

n

KubeVirt

Metal3

Fluxcd

Open-source

projects with

ICN

Enhancement

Existing Open

source, Major

enhancement, work

with upstream

Open source

projects in

ICN roadmap

for the

inclusion

NFV SDN specific
components

Nodus

SFC Mgr

Network Mgr

Route Mgr

VNFs

https://github.com/akraino-edge-stack/icn
LF Networking 4

https://github.com/akraino-edge-stack/icn

VNF deployment in ICN Stack

Linux
K8s

Linux

K8s

Public Cloud K8s Cluster

VMs

Private Cloud K8s cluster

K8s plugins
add-ons

K8s plugins
add-ons

K8s plugins
add-ons

Nodus
K8s plugins

add-ons

Nodus

Linux
K8s

Edge K8s Cluster

K8s plugins
add-ons K8s plugins

add-ons

Nodus

Possibly in hundreds

Infrastructure
Orchestrator

Deploy & Manage Apps - EMCO

Cluster
Management Scheduler

Placement
Controller

SD-EWAN traffic Hub

Resource Synchronizer

ICN

Distributed Applications

Internet

SD-EWAN CNF SD-EWAN CNF
SD-EWAN CNF

CNFs
VNFs

VNFs VNFsCNFs

https://github.com/akraino-edge-stack/icn
LF Networking 5

https://github.com/akraino-edge-stack/icn

KubeVirt – What and Why

• KubeVirt provides the components needed to build, modify, and
deploy virtual machines in Kubernetes

• It targets teams that already have or are wanting to adopt
Kubernetes and have existing virtual-machine based workloads
that cannot be easily containerized

• The existing virtual-machine based workloads can continue to
be used while transitioning incrementally to containerized
workloads

LF Networking 6

KubeVirt Architecture

LF Networking 7

Differences Between
Container and VNF
Deployments

LF Networking 8

Deployment vs. VirtualMachine

• Deployments and VirtualMachine resources describe a template
for creating instances of each: Pods and
VirtualMachineInstances respectively.

• Pods describe running containers, and VirtualMachineInstances
describe running VMs.

LF Networking 9

VirtualMachine CR Overview

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
name: vm

spec:
template:
metadata: ...
spec:
domain:
devices:
disks:
- name: containerdisk
disk:
bus: virtio

- name: cloudinitdisk
disk:
bus: virtio

interfaces:
- name: default
bridge: {}

networks:
- name: default
pod: {}

volumes:
- name: containerdisk
containerDisk:
image: ...

- name: cloudinitdisk
cloudInitNoCloud: ...

• Spec template describes the
VirtualMachineInstance, like Pod spec

• Domain contains the guest parts of
the VM

• Networks connects the guest
interfaces to the host networks

• Volumes populates the guest disks
from host data

LF Networking 10

Images

spec:
template:
spec:
domain:
devices:
disks:
- name: containerdisk
disk:
bus: virtio

volumes:
- name: containerdisk
containerDisk:
image: integratedcloudnative/ubuntu:16.04

• Pods specify container images
holding the application and its
dependencies

• VMIs provide similar functionality by
specifying the guest disks and host
volumes

LF Networking 11
LF Networking 11

Environment

spec:
template:
spec:
domain:
devices:
disks:
- name: cloudinitdisk
disk:
bus: virtio

volumes:
- name: cloudinitdisk
cloudInitNoCloud:
networkData: |
version: 2
...

userData: |
#cloud-config
ssh_pwauth: True
...

• Pods can accept environment values
to be set in the running container
inline or from ConfigMaps

• The comparable mechanism with
VMIs is to use cloud-init data sources

LF Networking 12

Networks (1/2)

spec:
template:
spec:
domain:
devices:
interfaces:
- name: default
bridge: {}

networks:
- name: default
pod: {}

• Pods using only the default Pod
network generally require no special
configuration

• A VMI requires describing the guest
and host parts

LF Networking 13

Networks (2/2)

spec:
template:
spec:
domain:
devices:
interfaces:
- name: additional-network
bridge: {}

networks:
- name: additional-network
multus:
networkName: additional-network-attachment-definition-name

• Using multiple networks is
accomplished by using Multus

• With Pods, the
k8s.v1.cni.cncf.io/networks annotation
is added to the spec containing the
name of NetworkAttachmentDefinition
describing the additional network

• With VMIs, a guest and host part are
again added

• KubeVirt translates the VMI spec for
the additional network to a
k8s.v1.cni.cncf.io/networks annotation
on the KubeVirt managed Pod

LF Networking 14

KubeVirt Network Architecture (1/3)

admin@fw0-firewall:~$ ip a
2: enp1s0: ...

link/ether 2a:81:33:d6:c6:a2 ...
inet 10.244.65.57/24 brd 10.244.65.255 ...

3: eth1: ...
link/ether 52:57:2b:7b:e4:27 ...
inet 192.168.10.3/24 brd 192.168.10.255 ...

LF Networking 15

KubeVirt Network Architecture (2/3)

bash-5.0# ip a
3: eth0-nic@if80: ... master k6t-eth0 ...

link/ether 2a:81:33:f7:6a:fe ...
5: net1-nic@if81: ... master k6t-net1 ...

link/ether 52:57:2b:77:54:6a ...
10: eth0: ...

link/ether c2:d9:9f:41:01:e9 ...
11: k6t-eth0: ...

link/ether 2a:81:33:f7:6a:fe ...
inet 169.254.75.10/32 ...

12: tap0: ... master k6t-eth0 ...
link/ether ce:4d:7c:c2:35:9d ...

13: net1: ...
link/ether ae:8e:8b:bd:8c:41 ...

14: k6t-net1: ...
link/ether 52:57:2b:77:54:6a ...
inet 169.254.75.11/32 ...

15: tap1: ... master k6t-net1 ...
link/ether 72:54:79:0b:b0:f7 ...

LF Networking 16

KubeVirt Network Architecture (3/3)

root@machine-2:~$ ip a
81: 6ff46d99091fb91@if5: ...

link/ether 2a:43:76:9b:20:dc ...
82: 6ff46d99091fb92@if7: ...

link/ether ca:14:f3:a9:5a:8b ...

LF Networking 17

Experiences and Lessons
Learned Enabling a
Commercial VNF with KubeVirt

LF Networking 18

Persistent Volumes (1/2)

spec:
template:
spec:
domain:
devices:
disks:
- name: pvcdisk
disk:
bus: virtio

volumes:
- name: pvcdisk
persistentVolumeClaim:
claimName: fedora-pvc

• A licensed VM will require that the
disk image be persistent, unlike the
ephemeral container disk approach
shown earlier

• The first step is set the host volume in
the VM spec to the name of a
persistent volume claim

LF Networking 19

Persistent Volumes (2/2)

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: "fedora-pvc"
labels:
app: containerized-data-importer

annotations:
cdi.kubevirt.io/storage.import.endpoint: "https://.../Fedora.qcow2"

spec:
accessModes:
- ReadWriteOnce

resources:
requests:
storage: 5Gi

storageClassName: "cstor-csi-disk"

• The next step uses the Containerized
Data Importer (CDI) project of
KubeVirt to import a QEMU disk
image into a persistent volume

• When this resource is created, the
CDI controllers will fetch the image
and create the PV

• Lastly, CDI requires that the K8s
cluster is configured with a dynamic
storage provisioner

• In our case, we used OpenEBS with
the cStor backend

• For further reference, refer to the
KubeVirt blog entry Building a VM
Image Repository

LF Networking 20

https://kubevirt.io/user-guide/operations/containerized_data_importer
https://kubevirt.io/2020/KubeVirt-VM-Image-Usage-Patterns.html

Enabling High Performance

apiVersion: kubevirt.io/v1
kind: KubeVirt
metadata:
name: kubevirt
namespace: kubevirt

spec:
configuration:
developerConfiguration:
featureGates:
- CPUManager

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
spec:
template:
spec:
domain:
cpu:
dedicatedCpuPlacement: true
isolateEmulatorThread: true

resources:
requests:
cpu: 8

limits:
cpu: 8

CPU Pinning

• First, enable the CPUManager feature
gate in KubeVirt's configuration

• Second, request a number of CPUs
and specify dedicated CPU placement
in the VMI spec

• To further improve latency the
emulator event loop can also be
specified to run in a dedicated vCPU

LF Networking 21

Enabling High Performance

spec:
template:
spec:
domain:
cpu:
features:
- name: "aes"
policy: "require"

AES Feature Detection

• VMIs may also request that they only
be scheduled on Nodes supporting
specific CPU features

• For example, encryption performance
may be improved on Nodes with AES-
NI instruction support

LF Networking 22

Enabling High Performance

spec:
template:
spec:
domain:
devices:
interfaces:
- name: ingress
sriov: {}

networks:
- name: ingress
multus:
networkName: sriov-intel

SR-IOV (1/4)

• Using SR-IOV capable NICs in a VM
is similar to using multiple networks
shown earlier

• However instead of instructing
KubeVirt to use type bridge in the
guest specification, use sriov instead

LF Networking 23

Enabling High Performance

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
name: policy-xl710

spec:
deviceType: vfio-pci
nicSelector:
deviceID: "1583"
vendor: "8086"

nodeSelector:
feature.node.kubernetes.io/network-sriov.capable: "true"
feature.node.kubernetes.io/pci-0200_8086_1583.present: "true"

numVfs: 8
resourceName: intel_sriov_nic

SR-IOV (2/4)

• The SR-IOV Network Operator is
deployed to create the sriov-intel
NetworkAttachmentDefinition

• The operator's
SriovNetworkNodePolicy CR selects
and configures SR-IOV drivers

LF Networking 24

https://github.com/k8snetworkplumbingwg/sriov-network-operator

Enabling High Performance

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
name: sriov-intel

spec:
ipam: |
{
"type": "host-local",
"subnet": "10.56.206.0/24",
"routes": [{
"dst": "0.0.0.0/0"

}],
"gateway": "10.56.206.1"

}
networkNamespace: default
resourceName: intel_sriov_nic

SR-IOV (3/4)

• The operator's SriovNetwork CR then
creates a
NetworkAttachmentDefinition
composed of the drivers configured
from the policy

LF Networking 25

Enabling High Performance

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
annotations:
k8s.v1.cni.cncf.io/resourceName: intel.com/intel_sriov_nic

name: sriov-intel
spec:
config: ‘{

"cniVersion":"0.3.1",
"name":"sriov-intel",
"type":"sriov",
"vlan":0,
"vlanQoS":0,
"ipam":{
"type":"host-local",
"subnet":"10.56.206.0/24",
"routes":[{"dst":"0.0.0.0/0"}],
"gateway":"10.56.206.1“

}
}'

SR-IOV (4/4)

• The resulting
NetworkAttachmentDefinition is what
will be referenced in the VMI networks
section

LF Networking 26

Interface Naming

spec:
template:
spec:
domain:
devices:
interfaces:
- name: default
bridge: {}

- name: additional-network
macAddress: ee:f0:75:e0:b6:26
bridge: {}

volumes:
- name: cloudinitdisk
cloudInitNoCloud:
networkData: |
version: 2
ethernets:
enp1s0:
dhcp4: true

eth1:
match:
macaddress: "ee:f0:75:e0:b6:26"

set-name: eth1
dhcp4: true

• In one case we encountered, a VM
image required specific interface
names

• While Multus allows for naming the
interfaces used in additional networks,
KubeVirt does not currently expose
this in the VM specification

• Instead, each additional network is
named net1, net2, etc.

• The workaround employed is to
provide a MAC address in the guest
devices section and use the
networkData of cloud-init to match the
MAC address and set the interface
name

LF Networking 27

How We Have Used EMCO

LF Networking 28

Helm Charts

• The first step to using KubeVirt with EMCO is to package the
KubeVirt resources into a Helm chart

• For the initial effort creating a chart containing only the
VirtualMachine YAML with no templated values may be sufficient

• For more complicated use cases, EMCO provides mechanisms for
overriding Helm chart values and patching resources at various
points:
• Profiles

• Deployment intent groups

• Generic action controller

• Note that both virtual and containerized applications may be mixed
freely together in the definition of an EMCO composite application

LF Networking 29

https://gitlab.com/project-emco/core/emco-base/-/blob/main/docs/design/generic-action-controller.md

Network Controller Intents (1/2)

• EMCO's network controllers provide the ability to define
additional networks and the application interfaces connected to
those networks

• The Nodus project provides the mechanisms to create the
networks and interfaces

• References
• Network Configuration Management

• OVN Action Controller

LF Networking 30

https://gitlab.com/project-emco/core/emco-base/-/blob/main/docs/design/emco-design.md#network-configuration-management
https://gitlab.com/project-emco/core/emco-base/-/blob/main/docs/design/emco-design.md#ovn-action-controller

Network Controller Intents (2/2)

version: emco/v2
resourceContext:
anchor: projects/P/composite-apps/CA/V/deployment-intent-groups/DIG/network-

controller-intent/NCI/workload-intents/WI/interfaces
metadata:
name: NAME

spec:
interface: net1
name: PROVIDER-NETWORK
defaultGateway: "false"
ipAddress: 192.168.10.2
macAddress: ee:f0:75:e0:b6:26

• When using network controller intents
together with the interface naming
workaround shown earlier, some care
is needed in providing the interface
name

• Recall that net1, net2, etc. are the
interface names created by Multus

• These names must be provided to
EMCO, not the renamed guest
interfaces (e.g. eth1, eth2, etc.)

LF Networking 31

Multi-cluster Deployment of VMs

• No special consideration is needed to use the multi-cluster
orchestration of EMCO together with VNFs

• Define the logical cloud and deployment intents as you would
for any EMCO project

LF Networking 32

Changes Made to EMCO

LF Networking 33

Deploying VirtualMachines

• Prior to this work, EMCO made some assumptions that the
application contained only Deployment resources

• Those assumptions were removed to support KubeVirt's custom
resources, i.e. VirtualMachine

LF Networking 34

Network Controller Additions (1/2)

• Changes were required in Nodus to better support the use of
Multus by KubeVirt

• Previously Nodus expected only one invocation of the CNI
during Pod creation; this resulted in attempting to create the
same NIC multiple times and failing

• Nodus now correctly handles multiple invocations, one per
additional network

LF Networking 35

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
name: unprotected-private-net

spec:
config: |-
{
"cniVersion": "0.3.1",
"type": "ovn4nfvk8s-cni",
"nfn-network": "unprotected-private-net"

}

apiVersion: v1
kind: Pod
metadata:
annotations:
k8s.plugin.opnfv.org/nfn-network: '{"type":"ovn4nfv","interface":[
{"interface":"net1","name":"unprotected-private-net",
"defaultGateway":"false","ipAddress":"192.168.10.3",
"macAddress":"52:57:2b:7b:e4:27"},
...

k8s.plugin.opnfv.org/ovnInterfaces: '[
{"ip_address":"192.168.10.3/24","mac_address":"52:57:2b:7b:e4:27",
"gateway_ip":"10.154.142.20","defaultGateway":"false",
"interface":"net1"},
...

name: virt-launcher-fw0-firewall-t6ld6

• An additional change was made to
EMCO to automatically create
NetworkAttachmentDefinitions of the
provider-networks and networks now
required by Nodus

• The NetworkAttachmentDefinition
contains the information needed to
determine which interface to create in
the Pod's namespace

• An example from the vFW project is
shown to the right

Network Controller Additions (2/2)

LF Networking 36

01/13/2022

VNF Life Cycle Management
with EMCO and KubeVirt
Kuralamudhan Ramakrishnan,
kuralamudhan.ramakrishnan@intel.com

Todd Malsbary, todd.malsbary@intel.com

mailto:kuralamudhan.ramakrishnan@intel.com
mailto:todd.malsbary@intel.com

