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VNF deployment in ICN Stack
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KubeVirt – What and Why

• KubeVirt provides the components needed to build, modify, and 
deploy virtual machines in Kubernetes

• It targets teams that already have or are wanting to adopt 
Kubernetes and have existing virtual-machine based workloads 
that cannot be easily containerized

• The existing virtual-machine based workloads can continue to 
be used while transitioning incrementally to containerized 
workloads
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KubeVirt Architecture
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Differences Between 
Container and VNF 
Deployments
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Deployment vs. VirtualMachine

• Deployments and VirtualMachine resources describe a template 
for creating instances of each: Pods and 
VirtualMachineInstances respectively.

• Pods describe running containers, and VirtualMachineInstances
describe running VMs.  
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VirtualMachine CR Overview

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
name: vm

spec:
template:
metadata: ...
spec:
domain:
devices:
disks:
- name: containerdisk
disk:
bus: virtio

- name: cloudinitdisk
disk:
bus: virtio

interfaces:
- name: default
bridge: {}

networks:
- name: default
pod: {}

volumes:
- name: containerdisk
containerDisk:
image: ...

- name: cloudinitdisk
cloudInitNoCloud: ...

• Spec template describes the 
VirtualMachineInstance, like Pod spec

• Domain contains the guest parts of 
the VM

• Networks connects the guest 
interfaces to the host networks

• Volumes populates the guest disks 
from host data 
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Images

spec:
template:
spec:
domain:
devices:
disks:
- name: containerdisk
disk:
bus: virtio

volumes:
- name: containerdisk
containerDisk:
image: integratedcloudnative/ubuntu:16.04

• Pods specify container images 
holding the application and its 
dependencies

• VMIs provide similar functionality by 
specifying the guest disks and host 
volumes
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Environment

spec:
template:
spec:
domain:
devices:
disks:
- name: cloudinitdisk
disk:
bus: virtio

volumes:
- name: cloudinitdisk
cloudInitNoCloud:
networkData: |
version: 2
...

userData: |
#cloud-config
ssh_pwauth: True
...

• Pods can accept environment values 
to be set in the running container 
inline or from ConfigMaps

• The comparable mechanism with 
VMIs is to use cloud-init data sources
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Networks (1/2)

spec:
template:
spec:
domain:
devices:
interfaces:
- name: default
bridge: {}

networks:
- name: default
pod: {}

• Pods using only the default Pod 
network generally require no special 
configuration

• A VMI requires describing the guest 
and host parts
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Networks (2/2)

spec:
template:
spec:
domain:
devices:
interfaces:
- name: additional-network
bridge: {}

networks:
- name: additional-network
multus:
networkName: additional-network-attachment-definition-name

• Using multiple networks is 
accomplished by using Multus

• With Pods, the 
k8s.v1.cni.cncf.io/networks annotation 
is added to the spec containing the 
name of NetworkAttachmentDefinition
describing the additional network

• With VMIs, a guest and host part are 
again added

• KubeVirt translates the VMI spec for 
the additional network to a 
k8s.v1.cni.cncf.io/networks annotation 
on the KubeVirt managed Pod
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KubeVirt Network Architecture (1/3)

admin@fw0-firewall:~$ ip a
2: enp1s0: ...

link/ether 2a:81:33:d6:c6:a2 ...
inet 10.244.65.57/24 brd 10.244.65.255 ...

3: eth1: ...
link/ether 52:57:2b:7b:e4:27 ...
inet 192.168.10.3/24 brd 192.168.10.255 ...
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KubeVirt Network Architecture (2/3)

bash-5.0# ip a
3: eth0-nic@if80: ... master k6t-eth0 ...

link/ether 2a:81:33:f7:6a:fe ...
5: net1-nic@if81: ... master k6t-net1 ...

link/ether 52:57:2b:77:54:6a ...
10: eth0: ...

link/ether c2:d9:9f:41:01:e9 ...
11: k6t-eth0: ...

link/ether 2a:81:33:f7:6a:fe ...
inet 169.254.75.10/32 ...

12: tap0: ... master k6t-eth0 ...
link/ether ce:4d:7c:c2:35:9d ...

13: net1: ...
link/ether ae:8e:8b:bd:8c:41 ...

14: k6t-net1: ...
link/ether 52:57:2b:77:54:6a ...
inet 169.254.75.11/32 ...

15: tap1: ... master k6t-net1 ...
link/ether 72:54:79:0b:b0:f7 ...
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KubeVirt Network Architecture (3/3)

root@machine-2:~$ ip a
81: 6ff46d99091fb91@if5: ...

link/ether 2a:43:76:9b:20:dc ...
82: 6ff46d99091fb92@if7: ...

link/ether ca:14:f3:a9:5a:8b ...
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Experiences and Lessons 
Learned Enabling a 
Commercial VNF with KubeVirt
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Persistent Volumes (1/2)

spec:
template:
spec:
domain:
devices:
disks:
- name: pvcdisk
disk:
bus: virtio

volumes:
- name: pvcdisk
persistentVolumeClaim:
claimName: fedora-pvc

• A licensed VM will require that the 
disk image be persistent, unlike the 
ephemeral container disk approach 
shown earlier

• The first step is set the host volume in 
the VM spec to the name of a 
persistent volume claim
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Persistent Volumes (2/2)

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: "fedora-pvc"
labels:
app: containerized-data-importer

annotations:
cdi.kubevirt.io/storage.import.endpoint: "https://.../Fedora.qcow2"

spec:
accessModes:
- ReadWriteOnce

resources:
requests:
storage: 5Gi

storageClassName: "cstor-csi-disk"

• The next step uses the Containerized 
Data Importer (CDI) project of 
KubeVirt to import a QEMU disk 
image into a persistent volume

• When this resource is created, the 
CDI controllers will fetch the image 
and create the PV

• Lastly, CDI requires that the K8s 
cluster is configured with a dynamic 
storage provisioner

• In our case, we used OpenEBS with 
the cStor backend

• For further reference, refer to the 
KubeVirt blog entry Building a VM 
Image Repository
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Enabling High Performance

apiVersion: kubevirt.io/v1
kind: KubeVirt
metadata:
name: kubevirt
namespace: kubevirt

spec:
configuration:
developerConfiguration: 
featureGates:
- CPUManager

---
apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
spec:
template:
spec:
domain:
cpu:
dedicatedCpuPlacement: true
isolateEmulatorThread: true

resources:
requests:
cpu: 8

limits:
cpu: 8

CPU Pinning

• First, enable the CPUManager feature 
gate in KubeVirt's configuration

• Second, request a number of CPUs 
and specify dedicated CPU placement 
in the VMI spec

• To further improve latency the 
emulator event loop can also be 
specified to run in a dedicated vCPU
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Enabling High Performance

spec:
template:
spec:
domain:
cpu:
features:
- name: "aes"
policy: "require"

AES Feature Detection

• VMIs may also request that they only 
be scheduled on Nodes supporting 
specific CPU features

• For example, encryption performance 
may be improved on Nodes with AES-
NI instruction support
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Enabling High Performance

spec:
template:
spec:
domain:
devices:
interfaces:
- name: ingress
sriov: {}

networks:
- name: ingress
multus:
networkName: sriov-intel

SR-IOV (1/4)

• Using SR-IOV capable NICs in a VM 
is similar to using multiple networks 
shown earlier

• However instead of instructing 
KubeVirt to use type bridge in the 
guest specification, use sriov instead
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Enabling High Performance

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
name: policy-xl710

spec:
deviceType: vfio-pci
nicSelector:
deviceID: "1583"
vendor: "8086"

nodeSelector:
feature.node.kubernetes.io/network-sriov.capable: "true"
feature.node.kubernetes.io/pci-0200_8086_1583.present: "true"

numVfs: 8
resourceName: intel_sriov_nic

SR-IOV (2/4)

• The SR-IOV Network Operator is 
deployed to create the sriov-intel
NetworkAttachmentDefinition

• The operator's 
SriovNetworkNodePolicy CR selects 
and configures SR-IOV drivers
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Enabling High Performance

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
name: sriov-intel

spec:
ipam: |
{
"type": "host-local",
"subnet": "10.56.206.0/24",
"routes": [{
"dst": "0.0.0.0/0"

}],
"gateway": "10.56.206.1"

}
networkNamespace: default
resourceName: intel_sriov_nic

SR-IOV (3/4)

• The operator's SriovNetwork CR then 
creates a 
NetworkAttachmentDefinition
composed of the drivers configured 
from the policy
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Enabling High Performance

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
annotations:
k8s.v1.cni.cncf.io/resourceName: intel.com/intel_sriov_nic

name: sriov-intel
spec:
config: ‘{ 

"cniVersion":"0.3.1", 
"name":"sriov-intel",
"type":"sriov",
"vlan":0,
"vlanQoS":0,
"ipam":{
"type":"host-local",
"subnet":"10.56.206.0/24",
"routes":[{"dst":"0.0.0.0/0"}],
"gateway":"10.56.206.1“

}
}'

SR-IOV (4/4)

• The resulting 
NetworkAttachmentDefinition is what 
will be referenced in the VMI networks
section
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Interface Naming

spec:
template:
spec:
domain:
devices:
interfaces:
- name: default
bridge: {}

- name: additional-network
macAddress: ee:f0:75:e0:b6:26
bridge: {}

volumes:
- name: cloudinitdisk
cloudInitNoCloud:
networkData: |
version: 2
ethernets:
enp1s0:
dhcp4: true

eth1:
match:
macaddress: "ee:f0:75:e0:b6:26"

set-name: eth1
dhcp4: true

• In one case we encountered, a VM 
image required specific interface 
names

• While Multus allows for naming the 
interfaces used in additional networks, 
KubeVirt does not currently expose 
this in the VM specification

• Instead, each additional network is 
named net1, net2, etc.

• The workaround employed is to 
provide a MAC address in the guest 
devices section and use the 
networkData of cloud-init to match the 
MAC address and set the interface 
name
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How We Have Used EMCO
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Helm Charts

• The first step to using KubeVirt with EMCO is to package the 
KubeVirt resources into a Helm chart

• For the initial effort creating a chart containing only the 
VirtualMachine YAML with no templated values may be sufficient

• For more complicated use cases, EMCO provides mechanisms for 
overriding Helm chart values and patching resources at various 
points:
• Profiles

• Deployment intent groups

• Generic action controller

• Note that both virtual and containerized applications may be mixed 
freely together in the definition of an EMCO composite application
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Network Controller Intents (1/2)

• EMCO's network controllers provide the ability to define 
additional networks and the application interfaces connected to 
those networks

• The Nodus project provides the mechanisms to create the 
networks and interfaces

• References
• Network Configuration Management

• OVN Action Controller
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Network Controller Intents (2/2)

version: emco/v2
resourceContext:
anchor: projects/P/composite-apps/CA/V/deployment-intent-groups/DIG/network-

controller-intent/NCI/workload-intents/WI/interfaces
metadata:
name: NAME

spec:
interface: net1
name: PROVIDER-NETWORK
defaultGateway: "false"
ipAddress: 192.168.10.2
macAddress: ee:f0:75:e0:b6:26

• When using network controller intents 
together with the interface naming 
workaround shown earlier, some care 
is needed in providing the interface 
name

• Recall that net1, net2, etc. are the 
interface names created by Multus

• These names must be provided to 
EMCO, not the renamed guest 
interfaces (e.g. eth1, eth2, etc.)
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Multi-cluster Deployment of VMs

• No special consideration is needed to use the multi-cluster 
orchestration of EMCO together with VNFs

• Define the logical cloud and deployment intents as you would 
for any EMCO project
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Changes Made to EMCO
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Deploying VirtualMachines

• Prior to this work, EMCO made some assumptions that the 
application contained only Deployment resources

• Those assumptions were removed to support KubeVirt's custom 
resources, i.e. VirtualMachine
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Network Controller Additions (1/2)

• Changes were required in Nodus to better support the use of 
Multus by KubeVirt

• Previously Nodus expected only one invocation of the CNI 
during Pod creation; this resulted in attempting to create the 
same NIC multiple times and failing

• Nodus now correctly handles multiple invocations, one per 
additional network
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apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
name: unprotected-private-net

spec:
config: |-
{
"cniVersion": "0.3.1",
"type": "ovn4nfvk8s-cni",
"nfn-network": "unprotected-private-net"

}
---
apiVersion: v1
kind: Pod
metadata:
annotations:
k8s.plugin.opnfv.org/nfn-network: '{"type":"ovn4nfv","interface":[
{"interface":"net1","name":"unprotected-private-net",
"defaultGateway":"false","ipAddress":"192.168.10.3",
"macAddress":"52:57:2b:7b:e4:27"},
...

k8s.plugin.opnfv.org/ovnInterfaces: '[
{"ip_address":"192.168.10.3/24","mac_address":"52:57:2b:7b:e4:27",
"gateway_ip":"10.154.142.20","defaultGateway":"false",
"interface":"net1"},
...

name: virt-launcher-fw0-firewall-t6ld6

• An additional change was made to 
EMCO to automatically create 
NetworkAttachmentDefinitions of the 
provider-networks and networks now 
required by Nodus

• The NetworkAttachmentDefinition
contains the information needed to 
determine which interface to create in 
the Pod's namespace

• An example from the vFW project is 
shown to the right

Network Controller Additions (2/2)
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