


EMCO: Synchronizing Resources 
with Target Clusters via Git

EMCO & GitOps



GitOps Introduction

• GitOps is a set of practices to manage infrastructure and application 
configurations using Git, an open-source version control system.

• GitOps uses Git pull requests to automatically manage infrastructure 
provisioning and deployment

• The Git repository contains the entire state of the system so that the 
trail of changes to the system state are visible and auditable.

• An agent is running inside environment continually, polls Git repo 
and/or container registry for changes. 

• When it detects a mismatch between the defined state and the 
running state, the agent pulls the defined configuration into the 
environment

• No inbound connections to the cluster



Advantages

• Reduced security and compliance risk.
– Because the CD agent is running inside of the cluster, 

there’s no need to store credentials externally. 

– Reduce or eliminate the holes in the firewall that allow 
inbound connections.

• Consistency
– Agent polls Git repo and container registry for changes and 

compare the state of the cluster to the defined state in Git. 

– This can detect and remediate configuration drift if changes 
are made to the cluster manually or from other sources



GitOps Flow



GitOps Support

• GitOps pattern is being adopted in many public and private 
clouds.

• Flux CD and Argo CD, are two Kubernetes-native 
applications that facilitate and help enforce GitOps pattern. 

• Azure supports GitOps on an Azure Arc-enabled 
Kubernetes cluster.

• GoogleCloud support GitOps with Anthos. 

• EMCO plans to support various vendors and technologies 
with its extensible design.



Intro to Azure ARC

• Azure Arc Simplifies complex and distributed 
environments across on-premise’s, edge and multi -
cloud

• It manages your entire environment , with a single 
pane of glass, by projecting your existing non-Azure, 
on premises, or other-cloud resources into Azure 
Resource  Manager

• It manages virtual machines, Kubernetes clusters 
and databases as if they are running in Azure



Azure Arc With GitOps



Fluxv2 Architecture



Flux v2 Flow

https://zwischenzugs.com/2021/07/31/a-hello-world-gitops-example-walkthrough/



EMCO Compliments GitOps

Additional requirements for Multi-cluster deployments not 
fulfilled by GitOps

• On-demand instantiation of applications on K8s clusters

• Intelligent selection of clusters to place the workloads

• On-demand scale-out (bursting) of the applications

• Customization of resources to the applications

• Automation of service mesh and other connectivity & 
security infrastructure

• Dependency and order of priority of application 
deployments between clusters



EMCO with GitOps



Rsync Plugin Framework

• Plugin selected based on the type of support in a cluster: 

direct access, Azure Arc cluster, FluxCD based, Google 

Anthos etc.

• The type of support available in cluster is provided at 

the time of cluster registration.

• Interfaces identified in Rsync for the Plugins
– Resources Provider 

– Resources Reference Provider

– Status Provider



Plugin Support

• Plans to support Plugins for
– Azure Arc

– Google Anthos

– Fluxv2

– ArgoCD

• Any others …



Rsync Plugin Framework

• Resources Provider interface - For actual Resources
– Methods - Create, Apply, Delete, Get, Commit, IsReachable

– Examples: K8s API, Git location

• Resources Reference interface - For configuration specific 

to cluster type
– Methods – ApplyConfig and DeleteConfig

– Examples: Azure Config, Flux CD CR’s (For ex: GitRepository, 

Kcustomize, etc.)

• Status Provider – For status handling
– Methods – StartClusterWatcher, ApplyStatusCR, DeleteStatusCR



App Instantiation with EMCO

Kubernetes Cluster
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App Monitoring with EMCO (WIP)

Kubernetes Cluster
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Demo Azure GitOps Configuration

1) Example Git repo https://github.com/Azure/arc-k8s-demo
2) The manifests in this repo provisions a few namespaces, deploy workloads and 

some team-specific configurations
3) K8s-configuration extension for Azure CLI is used.
4) az k8s-configuration create 

--name cluster-config 
--cluster-name AzureArcTest1 
--resource-group AzureArcTest
--operator-instance-name cluster-config 
--operator-namespace cluster-config 
--repository-url https://github.com/Azure/arc-k8s-demo 
--scope cluster 
--cluster-type connectedClusters

https://docs.microsoft.com/en-us/azure/azure-arc/kubernetes/tutorial-use-gitops-
connected-cluster#next-steps

https://github.com/Azure/arc-k8s-demo
https://docs.microsoft.com/en-us/azure/azure-arc/kubernetes/tutorial-use-gitops-connected-cluster#next-steps


Fluxv2 CR Example

• GitRepository: Provides details 
about the Git location to 
synchronize, branch and Repo

• Kustomization: Defines the source of 
Kubernetes manifests by referencing 
an object managed by source-
controller, the path to the 
Kustomization file within that source, 
and the interval at which the 
kustomize build output is applied on 
the cluster

apiVersion: source.toolkit.fluxcd.io/v1beta1
kind: GitRepository
metadata:
name: app1

spec:
interval: 30s
ref:
branch: main
url: https://github.com/xxx/repo1

apiVersion: kustomize.toolkit.fluxcd.io/v1beta2
kind: Kustomization
metadata:
name: kustapp1
namespace: default

spec:
interval: 5m0s
path: ./clusters/10309/context/100
prune: true
sourceRef:
kind: GitRepository
name: app1

targetNamespace: default    



Configurations and GitOps with ARC

1) Config agent tracks new 
or updated configuration 
resources.

2) Deploys a Flux operator 
to watch the Git repo for 
each config resource

3) Apply updates made to 
any configuration 
resource.


