

EMCO: Synchronizing Resources
with Target Clusters via Git

EMCO & GitOps

GitOps Introduction

• GitOps is a set of practices to manage infrastructure and application
configurations using Git, an open-source version control system.

• GitOps uses Git pull requests to automatically manage infrastructure
provisioning and deployment

• The Git repository contains the entire state of the system so that the
trail of changes to the system state are visible and auditable.

• An agent is running inside environment continually, polls Git repo
and/or container registry for changes.

• When it detects a mismatch between the defined state and the
running state, the agent pulls the defined configuration into the
environment

• No inbound connections to the cluster

Advantages

• Reduced security and compliance risk.
– Because the CD agent is running inside of the cluster,

there’s no need to store credentials externally.

– Reduce or eliminate the holes in the firewall that allow
inbound connections.

• Consistency
– Agent polls Git repo and container registry for changes and

compare the state of the cluster to the defined state in Git.

– This can detect and remediate configuration drift if changes
are made to the cluster manually or from other sources

GitOps Flow

GitOps Support

• GitOps pattern is being adopted in many public and private
clouds.

• Flux CD and Argo CD, are two Kubernetes-native
applications that facilitate and help enforce GitOps pattern.

• Azure supports GitOps on an Azure Arc-enabled
Kubernetes cluster.

• GoogleCloud support GitOps with Anthos.

• EMCO plans to support various vendors and technologies
with its extensible design.

Intro to Azure ARC

• Azure Arc Simplifies complex and distributed
environments across on-premise’s, edge and multi -
cloud

• It manages your entire environment , with a single
pane of glass, by projecting your existing non-Azure,
on premises, or other-cloud resources into Azure
Resource Manager

• It manages virtual machines, Kubernetes clusters
and databases as if they are running in Azure

Azure Arc With GitOps

Fluxv2 Architecture

Flux v2 Flow

https://zwischenzugs.com/2021/07/31/a-hello-world-gitops-example-walkthrough/

EMCO Compliments GitOps

Additional requirements for Multi-cluster deployments not
fulfilled by GitOps

• On-demand instantiation of applications on K8s clusters

• Intelligent selection of clusters to place the workloads

• On-demand scale-out (bursting) of the applications

• Customization of resources to the applications

• Automation of service mesh and other connectivity &
security infrastructure

• Dependency and order of priority of application
deployments between clusters

EMCO with GitOps

Rsync Plugin Framework

• Plugin selected based on the type of support in a cluster:

direct access, Azure Arc cluster, FluxCD based, Google

Anthos etc.

• The type of support available in cluster is provided at

the time of cluster registration.

• Interfaces identified in Rsync for the Plugins
– Resources Provider

– Resources Reference Provider

– Status Provider

Plugin Support

• Plans to support Plugins for
– Azure Arc

– Google Anthos

– Fluxv2

– ArgoCD

• Any others …

Rsync Plugin Framework

• Resources Provider interface - For actual Resources
– Methods - Create, Apply, Delete, Get, Commit, IsReachable

– Examples: K8s API, Git location

• Resources Reference interface - For configuration specific

to cluster type
– Methods – ApplyConfig and DeleteConfig

– Examples: Azure Config, Flux CD CR’s (For ex: GitRepository,

Kcustomize, etc.)

• Status Provider – For status handling
– Methods – StartClusterWatcher, ApplyStatusCR, DeleteStatusCR

App Instantiation with EMCO

Kubernetes Cluster

EMCO

OrchestratorCLM

Rsync

API Server

Kubernetes Cluster (Flux Controller Managed)

API Server

Flux source controller Flux Kcustomize controller

Kubernetes Cluster (Azure Arc Managed)

API Server

Flux source controller Flux Kcustomize controller

GitHub/Gitlab

Clusters/cluster1/context/100 – flux.yaml
Clusters/cluster1/context/100/app1 –service.yaml
Clusters/cluster1/context/100/app1 –pod.yaml

Monitor

Monitor Monitor

Register clusters
Kubeconfig for cluster1

Git credentials for cluster2

Git & Azure credentials for
cluster2

cluster1 cluster2 cluster3

Azure Arc

1 2

Instantiate app1 on cluster1,2,3

3

4. Apply Resources

4. Apply Azure
config for
cluster3

4.b Store Resources in git for
cluster2 & cluster3

5 Pull resources

5a Configure Flux5b Pull Resources

4. a Store Fluxv2 CR in git for
cluster2 &

Mongo
DB

App Monitoring with EMCO (WIP)

Kubernetes Cluster

EMCO

OrchestratorCLM

Rsync

API Server

Kubernetes Cluster (GitOps Managed Cluster)

API Server

Flux source controller Flux Kcustomize controller

GitHub/Gitlab

Clusters/cluster2/status/ 100-ap1.yaml
Clusters/cluster2/status/100-app2.yaml
Clusters/cluster2/context/200-app1.yaml
Clusters/cluster2/context/200-app2.yaml

Monitor

Monitor

cluster1 cluster2

Control Git
clusters/cluster2/status/ 100-ap1.yaml
Clusters/cluster2/status/100-app2.yaml
Clusters/cluster2/context/200-app1.yaml
Clusters/cluster2/context/200-app2.yaml

Apply Status CR

Store StatusCR for cluster2

Pull Status CRWatch cluster

Status CR

Status CR

Notifications for CR
change

Push Status CR

Watch cluster
Mongo

DB

18

Backup

Demo Azure GitOps Configuration

1) Example Git repo https://github.com/Azure/arc-k8s-demo
2) The manifests in this repo provisions a few namespaces, deploy workloads and

some team-specific configurations
3) K8s-configuration extension for Azure CLI is used.
4) az k8s-configuration create

--name cluster-config
--cluster-name AzureArcTest1
--resource-group AzureArcTest
--operator-instance-name cluster-config
--operator-namespace cluster-config
--repository-url https://github.com/Azure/arc-k8s-demo
--scope cluster
--cluster-type connectedClusters

https://docs.microsoft.com/en-us/azure/azure-arc/kubernetes/tutorial-use-gitops-
connected-cluster#next-steps

https://github.com/Azure/arc-k8s-demo
https://docs.microsoft.com/en-us/azure/azure-arc/kubernetes/tutorial-use-gitops-connected-cluster#next-steps

Fluxv2 CR Example

• GitRepository: Provides details
about the Git location to
synchronize, branch and Repo

• Kustomization: Defines the source of
Kubernetes manifests by referencing
an object managed by source-
controller, the path to the
Kustomization file within that source,
and the interval at which the
kustomize build output is applied on
the cluster

apiVersion: source.toolkit.fluxcd.io/v1beta1
kind: GitRepository
metadata:
name: app1

spec:
interval: 30s
ref:
branch: main
url: https://github.com/xxx/repo1

apiVersion: kustomize.toolkit.fluxcd.io/v1beta2
kind: Kustomization
metadata:
name: kustapp1
namespace: default

spec:
interval: 5m0s
path: ./clusters/10309/context/100
prune: true
sourceRef:
kind: GitRepository
name: app1

targetNamespace: default

Configurations and GitOps with ARC

1) Config agent tracks new
or updated configuration
resources.

2) Deploys a Flux operator
to watch the Git repo for
each config resource

3) Apply updates made to
any configuration
resource.

