
Cloud Native OpenStack
OpenStack done the Kubernetes way...

About Me

@parthyadav3105

Ex-LFN Intern
Ex-Contributor @ Student Volunteer Project, OPNFV
Contributor at CIRV-SDV, Vineperf projects
Research Associate @ University of Delhi

Interests: Cloud-Native | NFVi | Hybrid-Cloud | Multi-Cloud | Edge | Container Networks

https://parthyadav.netlify.app/

Introduction

Let’s get to same page first!

Introduction

NFVi Implementations, Anuket

• RM principles require Cloud Infrastructure(NFVi) to be cloud-native
– Both RA1(OpenStack), RA2(Kubernetes) must be cloud-native

• req.gen.cnt.01 (RA1) [stateless design]
• req.gen.cnt.02 (RA1, RA2) [immutable]
• req.gen.cnt.03 (RA2) [conformant/certified]
• req.gen.cnt.04 (RA2) [abstraction]
• req.gen.cnt.05 (RA2) [configurable, automated, open-APIs]

• Managing Cloud Infrastructure is complex,
• Installers, Airship-RI approaches OOK(OpenStack on Kubernetes)
• Vanilla Kubernetes is not enough

https://cntt-n.github.io/CNTT/doc/common/chapter00.html#2.3
https://cntt-n.github.io/CNTT/doc/common/chapter00.html

Problem Statements

Currently, as a community, we all are trying to solve:
• Cloud-Native Infrastructure.
• Run CNFs and VNFs together.
• Multi/Hybrid cloud deployments.
• Edge to Data Centers.
• DevOps and Security Pipelines.

Without any lock-in stack...

Need for Cloud-Native OpenStack

Needs for making OpenStack cloud-native?
• OpenStack is stable but complex to maintain, upgrade.
• Need for abstractions, self-healing, zero-downtime, etc.
• Small edge deployments, yet configurable and scalable.

Motivation:
• Hybrid Academic Cloud

– Small, easy to maintain
– Switch between public and on-prem
– Self-managed

OpenStack Architecture

Key Observations

• loosely coupled, distributed architecture
• Many services

• Nova(Compute)
• Cinder(Block Storage)
• Keystone(Identity)
• ……..

• Every service internally has its own architecture.
– Composed of several process.
– Common design choices:

• Public APIs for other services to integrate.
• Communication b/w processes: AMQP message broker.
• Database to store state.

Example

Reference: https://docs.openstack.org/install-guide/get-started-logical-architecture.html

https://docs.openstack.org/install-guide/get-started-logical-architecture.html

Example flow, Nova

Reference: 1. bit.ly/openstack-troubleshoot
 2. https://www.linuxtechi.com/step-by-step-instance-creation-flow-in-openstack/

http://bit.ly/openstack-troubleshoot
https://www.linuxtechi.com/step-by-step-instance-creation-flow-in-openstack/

Key Observations
With OpenStack we get scenarios:

• Multiple nodes.
• Multiple software dependency stack.
• Multiple configurations

Which results into problems:
• Complex to manage

– Multiple operating system, software versions,
• Different troubleshooting for each

– Hard to Automate
• After long term maintenance & troubleshooting

– State, configurations of dependencies can differ from node-to-node even for same software stack.
• Infrastructure is not immutable

– Again, Hard to maintain

Solution

From these observations we understands:
• We need immutable infrastructure for OpenStack deployment and

maintenance.
• We need automation for deploying OpenStack services.
• We need dependency management with proper version control.

We conclude that to making OpenStack cloud-native, we first need OpenStack
deployments to have cloud-native values like repeatable deployment, immutable
infrastructure, automation, etc.

As we know solution to this problem is already available: Containerization

Containerized OpenStack

Containerized OpenStack

With containerization we get high portability, repeatable, version-controlled
deployments. Images follow Image Immutability Principle making it easy to
automate.

At OpenStack community has been containerizing OpenStack for some time
and we have multiple projects for container images:

• OpenStack-Ansible-LXC
• Kolla
• LOCI

https://docs.openstack.org/openstack-ansible-lxc_container_create/latest/
https://github.com/openstack/kolla
https://github.com/openstack/loci

Automation

With containerization, complexity decreases slightly
• We still have multiple nodes and multiple containers

– Now we need automation on Containerized OpenStack

We also need life-cycle management operations on these deployments
We need configuration management for various OpenStack deployment.
We need easy-to-scale OpenStack deployments.

Some Deployment Studies

• OpenStack on OpenStack (OOO)
• Example: TripleO

• OpenStack on Kubernetes (OOK)
• Example: Airship

Key Observations:
• Undercloud-Overcloud pattern
• OOK deployment:

– Kubernetes brings
• Easy scalability, LCM, resiliency, declarative infrastructure,

immutable

OpenStack-Helm

• OpenStack community project
– For deployment of OpenStack on Kubernetes
– OpenStack-Helm
– Image agonist
– LCM of OpenStack

https://github.com/openstack/openstack-helm

Cloud-Native values from OOK
deployments

With an OOK deployment and OpenStack-Helm, we build cloud-native
paradigms in the process of deploying OpenStack like:

• Declarative, immutable, scalable, repeatable, disposable,
consistent, automated, resilient, versioned, packaged,
configurable deployment.

• We can built deep observability on this deployment.
• We can built secure pipelines for this deployment.

OOK deployment are not enough

• We have observed:
– OpenStack is distributed service based by design.
– OOK deployment builds other cloud-native values for installing

OpenStack.

But still, the operations done by OpenStack are not cloud-native.

This is the next step to address, to take all previous learnings and build a
Cloud-Native OpenStack.

What’s Next?

Cloud Native OpenStack

Considerations for making
OpenStack Cloud Native

• A lot has been done and a lot has to be done.
– OpenStack has 20M+ lines of code and ~60K commits in a year and over ~60

projects.
– Widely used.
– Very complex.
– Solves many problem statements, is a complete IaaS.

Not possible to rewrite all this code to make it cloud-native.
But we need cloud-native operations.

How Kubernetes is Cloud-Native

Various design choices….
• Declarative API
• Controller patterns
• And many more…

Controller patterns:
• Operation for the platform are coded using loops

– Loops reconcile current state to the desired state.
– Desired state is obtained from a highly available key/value store.
– This store is updated only through a declarative api.

Kubernetes allow extending itself using controllers and custom resources.

KupenStack

Principles:
• Should not change anything in OpenStack (i.e., Compatibility with any certified OpenStack)
• Should not change anything in Kubernetes (i.e., Compatibility with any certified Kubernetes)

Kubernetes + OpenStack = KupenStack

Cloud-Native OpenStack Architecture

“KupenStack is the cloud-native layer between OpenStack and Kubernetes”

Kupenstack
A OOK controller with intelligence to build cloud-native operations on
top of OpenStack. Operations like provisioning, scaling, self-healing,
lcm, zero-downtime, upgrades of OpenStack infrastructure as well as
resources(like VM, Subnet, Routers, etc.) and provide them as
declarative APIs to its users.

OpenStack
Containerized OpenStack(exactly same as before).

Kubernetes
Undercloud, k8s on bare metal, VM, public cloud, etc.(exactly same
as before).

Logical Flow

OpenStack as-code
Example

Design choices

• Mapping OpenStack to Kubernetes
– Namespace vs Projects
– Authentication, Authorization(RBAC)
– …..

• Future and integrations with other stack
– Airship
– Crossplane
– KubeFed
– Multi/Hybrid Cloud
– ……

Checkout Paper: <link here>

Important:

Demo

All code is available at: github.com/kupenstack

http://github.com/kupenstack

Conclusion

• KupenStack is the cloud-native layer b/w OpenStack and Kubernetes.
• Admins declare desired OpenStack infrastructure using Custom Resources.
• Users declare desired OpenStack resources using Custom Resources.
• KupenStack abstracts away all the complexities of OpenStack for end-users.
• Self-healing, zero-downtime, automated upgrades, scaling as Code for OpenStack.

• Use-cases:
– Hybrid Academic Cloud.
– Edge
– Cloud Native NFVi for CNF, VNF, 5G
– …..

Read More

Link: https://arxiv.org/pdf/2106.02956.pdf

https://arxiv.org/pdf/2106.02956.pdf

Queries/Suggestions

Parth Yadav
Research Associate,
University of Delhi
parthyadav3105@gmail.com

Vipin Rathi
Assistant Professor,
University of Delhi
vipin.rathi@ramanujan.du.ac.in

Paper Link: https://arxiv.org/pdf/2106.02956.pdf

mailto:parthyadav3105@gmail.com
mailto:vipin.rathi@ramanujan.du.ac.in
https://arxiv.org/pdf/2106.02956.pdf

Thank You

