
ONAP: OpenDaylight
Decoupling
Dan Timoney - AT&T

@djtimoney

Problem Statement

• A given release CCSDK/SDNC code is compiled for a specific release of OpenDaylight:
– ONAP Honolulu release is currently based on OpenDaylight Aluminum SR3

• What if you need to run SDNC with a different version of OpenDaylight (for example, to
address a bug fix)?

– Make a local copy of CCSDK parent poms (ccsdk/parent repo)
– Update versions of OpenDaylight and third-party libraries pre-installed in OpenDaylight distribution
– Compile CCSDK and SDNC repos against updated local version of parent poms

• Most OpenDaylight major releases have some breaking changes that require code changes. So, some code changes could be
needed.

– Create new dockers using locally compiled version

• Our goal is to support a much simpler process:
– Run SDNC in a separate container from OpenDaylight, and use the versions you need.
– OR, if you can’t (e.g. due to performance concerns), create your own dockers, based on a docker

container containing the OpenDaylight version you need.

Current model : SDNC within OpenDaylight

SDNC Container (ODL karaf)

Service Logic Interpreter (SLI)

Config Data

Northbound API
SDNC / CCSDK installed as set of
OSGi features in OpenDaylight

karaf container

SQL
Adapto

r

A&AI
Adapto

r
MD-SAL used to store data in-

memory and to expose config and
operational data

REST
API

plugin

…

Yangtools used to generate code
for Northbound APIs based on

Yang model

NETCONF
mounts

SDNC accesses NETCONF mount
via REST query

NETCONF is used to connect to
external device/controller

Decoupled model : SDNC separated from
OpenDaylight

OpenDaylight

SDNC Container (springboot)

Service Logic Interpreter (SLI)

Config Data

Northbound API

SDNC / CCSDK installed as set of
beans in springboot container

SQL
Adapto

r

A&AI
Adapto

r

Config and
operational data

stored in separate
database

REST
API

plugin
…

Swagger-codegen used to generate
code for Northbound APIs based

on swagger model

NETCONF
mounts

SDNC accesses NETCONF mount
via REST query

Implementing Decoupled Model – Phase 1

• Work spans multiple ONAP releases:
– Guilin:

• Refactored code to isolate dependencies on
OpenDaylight

• Updated CCSDK components to allow SLI to
consume adaptors and plugins as beans when
running outside OSGi

• Implemented a simple springboot container
implementing SLI-API (healthcheck).

Implementing Decoupled Model – Phase 2

• Work spans multiple ONAP releases:
– Honolulu:

• Early implementation of GRA (GENERIC-
RESOURCE-API) microservice

– Primary interface used by SO

Implementing Decoupled Model – Phase 3

• Work spans multiple ONAP releases:
– Istanbul:

• Proof of concept version of GRA
– Will support basic set of GENERIC-

RESOURCE-API data elements:
» Services
» Networks
» VNFs
» VF-Modules

Proof of Concept – GRA microservice

• GRA microservice implements
subset of 2 interfaces:

– SLI-API: implements healthcheck
– GENERIC-RESOURCE-API : primary

interface between SO and SDNC

• Neither of these subsets currently
implemented require NETCONF
mounts – so OpenDaylight
container is not needed for this
proof of concept

GRA microservice (springboot)

Service Logic Interpreter (SLI)

Config Data

GENERIC-
RESOURCE-API

SQL
Adapto

r

A&AI
Adapto

r

REST
API

plugin
…

SLI-API

Lessons Learned to Date

• Running SLI outside of karaf was fairly
simple
– SLI and most of its adaptors have no direct

dependencies on OpenDaylight.
• Porting northbound interfaces is harder

Porting Northbound Interface

• 2 classes of endpoints:
– RPCs
– CRUD operations on config and operational trees.

• Porting RPCs is fairly straightforward:
• Mostly same application code, except for saving state data

• Porting CRUD operations is VERY labor
intensive

Porting Northbound Interface CRUD Operations

• With Yangtools/MD-SAL, code for
GET/PUT/POST/DELETE to config tree is generated –
BUT that code needs MD-SAL.

• We were able to generate some code using swagger-
codegen for our northbound interface, but we needed to
CRUD operations

• This is a major limitation : we would need to implement
over 2,000 methods if we wanted to implement every
possible CRUD operation for GENERIC-RESOURCE-API

Next Steps

• Istanbul:
– GRA microservice proof of concept

• test that GRA microservice can be used in place of current
SDNC to implement at least one ONAP use case

• Beyond:
– Improve API code generation

• Generate implementation of CRUD operations instead of
requiring manual coding

