LILF
NETWORKING

LFN Developer & Testing Forum

ONAP: OpenDaylight
Decouphng

Dan Tlmoney - AT&T

LILF

Problem Statement VORI

LFN Developer & Testing Forum

* Aqgiven release CCSDK/SDNC code is compiled for a specific release of OpenDaylight:
— ONAP Honolulu release is currently based on OpenDaylight Aluminum SR3
* What if you need to run SDNC with a different version of OpenDaylight (for example, to
address a bug fix)?
— Make a local copy of CCSDK parent poms (ccsdk/parent repo)

— Update versions of OpenDaylight and third-party libraries pre-installed in OpenDaylight distribution

— Compile CCSDK and SDNC repos against updated local version of parent poms

Most OpenDaylight major releases have some breaking changes that require code changes. So, some code changes could be
needed.

— Create new dockers using locally compiled version
* Our goal is to support a much simpler process:

— Run SDNC in a separate container from OpenDaylight, and use the versions you need.

— OR, if you can'’t (e.g. due to performance concerns), create your own dockers, based on a docker
container containing the OpenDaylight version you need.

LF

Current model : SDNC within OpenDaylight Mo

SDNC / CCSDK installed as set of
OSGi features in OpenDaylight
karaf container

MD-SAL used to store data in-
memory and to expose config and
operational data

SDNC Container (ODL karaf)

Northbound API

Service Logic Interpreter (SLI)

saL A&AI REST
Adapto Adapto API
r r plugin

s S
NETCONF

Config Data
mounts

LFN Developer & Testing Forum

Yangtools used to generate code
for Northbound APIs based on
Yang model

NETCONF is used to connect to
external device/controller

SDNC accesses NETCONF mount
via REST query

Decoupled model : SDNC separated from OLF e

n
O . e n D a I I . ht LFN Developer & Testing Forum

SDNC / CCSDK installed as set of SDNC Container (springboot)
beans in springboot container

Northbound API Swagger-codegen used to generate
code for Northbound APIs based
on swagger model

Service Logic Interpreter (SLI)

Config and
operational data ARAI
stored in separate Adapto
database 4

OpenDaylight SDNC accesses NETCONF mount
via REST query

~—
S
Config Data NETCONF
mounts

LILF

Implementing Decoupled Model — Phase 1 NETWORKING

LFN Developer & Testing Forum

* Work spans multiple ONAP releases:
— Guilin:
+ Refactored code to isolate dependencies on
OpenDaylight

« Updated CCSDK components to allow SLI to
consume adaptors and plugins as beans when
running outside OSGi

* Implemented a simple springboot container
implementing SLI-API (healthcheck).

LILF

Implementing Decoupled Model — Phase 2 NETWORKING

LFN Developer & Testing Forum

* Work spans multiple ONAP releases:
— Honolulu:

 Early implementation of GRA (GENERIC-
RESOURCE-API) microservice

— Primary interface used by SO

LILF

Implementing Decoupled Model — Phase 3 NETWORKING

LFN Developer & Testing Forum

* Work spans multiple ONAP releases:

— Istanbul:
 Proof of concept version of GRA

— Will support basic set of GENERIC-
RESOURCE-API data elements:

» Services

» Networks

» VNFs

» VF-Modules

LILF

Proof of Concept — GRA microservice NETWORKING

LFN Developer & Testing Forum

GRA microservice (springboot)

GENERIC-

SLI-API
RESOURCE-API

Service Logic Interpreter (SLI)

saL A&AI
Adapto Adapto
r r

= =
Config Data

GRA microservice implements
subset of 2 interfaces:

— SLI-API: implements healthcheck

— GENERIC-RESOURCE-API : primary

interface between SO and SDNC

Neither of these subsets currently
implemented require NETCONF
mounts — so OpenDaylight
container is not needed for this
proof of concept

LILF

Lessons Learned to Date NETWORKING

* Running SLI outside of karaf was fairly
simple
— SLI and most of its adaptors have no direct
dependencies on OpenDaylight.

* Porting northbound interfaces is harder

LILF

Porting Northbound Interface NEYORNG

» 2 classes of endpoints:

— RPCs
— CRUD operations on config and operational trees.

» Porting RPCs is fairly straightforward:

* Mostly same application code, except for saving state data

* Porting CRUD operations is VERY labor
Intensive

LILF

Porting Northbound Interface CRUD Operations el

« With Yangtools/MD-SAL, code for
GET/PUT/POST/DELETE to config tree is generated —
BUT that code needs MD-SAL.

* We were able to generate some code using swagger-
codegen for our northbound interface, but we needed to
CRUD operations

» This is a major limitation : we would need to implement
over 2,000 methods if we wanted to implement every
possible CRUD operation for GENERIC-RESOURCE-API

LILF

Next Steps RFVORKING

LFN Developer & Testing Forum

* |stanbul:

— GRA microservice proof of concept

- test that GRA microservice can be used in place of current
SDNC to implement at least one ONAP use case

- Beyond:

— Improve API code generation

* Generate implementation of CRUD operations instead of
requiring manual coding

LILF
NETWORKING

LFN Developer & Testing Forum

