

Dynamic License Scanning
Alexander Mazuruk (Samsung), Morgan Richomme (Orange)

February 2021

 2

License scanning in LFN projects

Regular codebase license scan reported by LF

Why it is import to scan licenses...

Because it is the law...

Because breaking the law could be very
costly for companies/communities

Because it is important to keep open-source credible, legitimate
and usable- projects with record of licensing issues create bad
reputation for open-source in general. Some corporations even
prohibit use open-source due to potential licensing issues.

Codebase scanning does not see everything...

Codebase scanning usually sees only explicit references to licence in the codebase

BUT
We distribute lots of dockers (from the Nexus) built with LOTS of upstream components

Most of the time the teams use baseline images without checking all the components in it

These upstream components may include LOTS of licences not seen by a static scanning

We Need a dynamic scanning to be sure that what we distribute conforms to
licensing requirements

For mature projects, static codebase scan is not enough

https://www.linuxfoundation.org/wp-content/uploads/Docker-Containers-for-Legal-Professionals-Whitepaper_042420.pdf

Dynamic scanning with Tern and ScanCode toolkit

https://github.com/tern-tools/tern

Dynamic scan of the images
Stand-alone version queries
package manager for licences
of installed software

https://github.com/nexB/scancode-toolkit

Used as extension for Tern.
Analysis on file-by-file basis of image contents

https://github.com/tern-tools/tern
https://github.com/nexB/scancode-toolkit

Dynamic scanning with Tern and ScanCode toolkit

Tern is an inspection tool to find the metadata
of the packages installed in a container image.

It unpacks each layer, and mounts them
one-by-one using overlayfs for analysis.

Queries package manager for installed packages
and licences. Relies on correctness of how packages
were marked in package manager.

Relatively quick – a large image should
be scanned in less than 1h.

We recommend setting the format
to html or yaml/json for parsing as those include
Relation between packages and licenses

ScanCode detects licenses, copyrights, package manifests,
direct dependencies, and more both in source code and
binaries.

Does diff comparison between a database of license texts
and code instead of relying only on approximate regex
patterns
or probabilistic search, edit distance or machine learning.

It takes a long time to perform a scan – in most cases
counted in hours for a Docker image.

It has its own reporting tools, including dedicated GUI app.

Used by Eclipse Foundation, OpenEmbedded,
Free Software Foundation and many more

From Static to Dynamic scanning in ONAP

Layer 1

Pkg 1 of Layer 1

License of Pkg 1 of Layer 1

Pkg 2 of Layer 1

License of Pkg 2 of Layer 1

From Static to Dynamic scanning in ONAP

1 or 2 warning reported

Usually simple to fix :
• remove a file/directory
• complete the licence description

76 % of the Docker images we are
building contain GPLv3

libraries/packages…

* : Manual tests done with Tern only
on subset of 163/184 of ONAP

Docker images

We need to have an automated way to report licensing issues as early as possible to the PTLs

Automation of Dynamic scanning: PoC part I – weekly run

ONAP solution consuming the dockers

ONAP registries where we push the dockers we build

Docker files
Hosted in ONAP repo
Reviewed in Gerrit

LF docker build chain

1 : Run Tern on weekly master (manually then automatically as
part of weekly tests)
Push results as part of weekly tests
Share results with the PTL
Create JIRA (as we do for security issues)

Automation of Dynamic scanning POC part II – part of build verif job

ONAP solution consuming the dockers

ONAP registries where we push the dockers we build

Docker files
Hosted in ONAP repo
Reviewed in Gerrit

LF docker build chain

Add a Tern + Scancode
processing in docker build
chain

2. Add scancode and include
verification as closely as possible
to the docker build

Other useful tools

https://github.com/justone/dockviz

Generation of Docker’s layer-by-layer dependancy graph
Useful in multiple image scenario (e.g. kubernetes), to find which fixes
may fix most dependant images

https://gerrit.onap.org/r/gitweb?p=integration.git;a=tree;f=test/legal/docker_license_analysis

Vagrantfile with tern & scancode installed + usage instructions.
It is virtualized rather than containerized for CI usage due to need of fuse device access &
docker.sock acces on host if dockerized.

Dockviz

https://github.com/justone/dockviz
https://gerrit.onap.org/r/gitweb?p=integration.git;a=tree;f=test/legal/docker_license_analysis

Conclusions

We will not fix everything at once… But slow and steady wins the race.

Tern + Scancode processing takes time and resources – discussion with Tern community to adjust the
configuration to improve performance.

Reuse of Baseline images (java & python produced by Integration team) reduce the risk and Integration is
responsible of these images. If you prefer to use base images of your choice, you are free to do so but then
you are responsible for licensing issues.
Usage of official Baseline images should be considered as a best practice and adopted by new projects.

Automate (where feasible) generation of Compliance documents for Docker images (needs some
hosting from LF for source code of packages, etc)

It might be impossible to rid ourselves of GPLv3 packages entirely. I propose we avoid them as much as
possible and ask for waiver when required (e.g. onap-python baseline image) & provide compliance for the
packages + link to it in the depending images.

Thank you

ONAP Dynamic scanning in weekly master CI/CD chain

https://logs.onap.org/onap-integration/weekly/onap_weekly_pod4_master/01-14-2021_00-01/tern-reports/

164 images analyzed (on 183 images detected in the ONAP cluster)
125 on 164 (76 %) includes GPLv3 components

Upstream components (dockerhub) include GPLv3 components

The python baseline image contains 2 python lib released in GPLv3 (gdbm and readline)

Libraries are indicated in the report, but postprocessing needed to extract main GPLv3 components used
in the dockers

ONAP Dynamic scanning in weekly master CI/CD chain

It is possible to build a complete (and complex) dependency graph of the layers of all the dirstributed dockers.
Any fix in a common layer can fix several problems

Image 1 Image 2

Image N

Layer 0

Layer 1.1

Layer 1.2 Layer 2.2

Layer 2.1 Layer N.1

Simplified dependency view

ONAP Dynamic scanning in weekly master CI/CD chain

Full view : https://logs.onap.org/onap-integration/weekly/onap_weekly_pod4_master/01-14-2021_00-01/tern-reports/images-created-by2.png

Photos
● Philosophers of law ask "what is law, and what should it be? By Jonathunder – wikipedia - CC BY-SA 4.0

● United States one dollar bill. - wikipedia - Public Domain

● Professional reputation, red and green buttons with hand gestures – pixy.org - CC BY-NC-ND 4.0

● Warning Sign – Openclipart – Public Domain

Credits

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

