
Load Balancing in the

Infrastructure
Per Andersson (per@kaloom.com)

• The reference model encompasses

• Virtual Machine Manager

• Virtual Infrastructure Manager

• Container Infrastructure Service Instances

• Container Infrastructure Service Manager

• How does Load Balancing relate to

these two different types of

environments?

Load Balancing and the reference model

• Two ways to do it

• Use the included LBaaS

• Octavia

• Bring you own

• Instantiate a VM with the flavor of LB you wan to use

• The “user” is responsible for configuration and orchestration of the needed components and services

• Networks

• VIP

• LB instance

• LBaaS

• VM

• Endpoints and their addresses

• Adding/removing endpoints to/from LB endpoint set

• Load Balancing is explicitly managed and controlled by the user

• Networking is simple and straightforward to set up using the Neutron APIs

Load Balancing in Openstack

https://docs.openstack.org/octavia/latest/
https://docs.openstack.org/neutron/victoria/

• Traditional L4 Load Balancing as in an IaaS type of system does not exist in Kubernetes.

• K8s is built around concepts like

• POD

• Workload

• Deploymnet

• ReplicaSet

• StatefulSet

• DaemonSet

• ….

• Controller

• Service

• Load Balancing/scaling is intrinsic to Kubernetes and is built in.

• Controlled by creating a service

• A typical user never has to care about networking resources and network infrastructure,

Load Balancing in “Standard” Kubernetes

• Example workload

• Deployment with 4 replicas of the POD my-app

• There are no ip addresses defined in the
specification!

• Late binding

• A pod instance’s ip address is not known until
the instance has been started and the CNI
plugin has assigned an address to it

• A new ip address is typically assigned to
each new “incarnation” of a pod instance

• Define a deployment

• apiVersion: apps/v1
kind: Deployment
metadata: name: my-app-deployment
spec:

selector:
matchLabels:

app: my-app
replicas: 4
template:

metadata:
labels:

app: my-app
spec:

containers:
- name: my-app
image: my-app-1.2.3
ports:
- containerPort: 123

Define a set of PODs in Kubernetes

• Example Service

• A service linked to the deployment with 4 replicas of the pods matching the
selector “my-app”

• There are no ip addresses defined in the specification!

• Late binding

• A service is assigned it’s ip address once the specification is “consumed” by the
system

• The ip address remains the same for the lifetime of the service

• A and AAAA records are typically added to the internal Kubernetes DNS service
that maps the service name to the ip address(es) of the service.

• Internal Load Balancing is automatically set up

• Automatic mapping between the ip address of the service towards the current set
of ip addresses used by pods that match the selector “my-app”

• New session request towards service address is load balanced over the set of
pods

• Define a service

• apiVersion: v1
kind: Service
metadata:

name: my-service
spec:

selector:
app: my-app

ports:
- protocol: TCP

port: 231
targetPort: 123

Define a Service in Kubernetes

• It is possible to add extra networks to Kubernetes and attach NW interfaces in the pod’s network namespace using
Kubernetes extensions

• The problem is that these extensions is not interacting well with the overall semantics of the Kubernetes networking
principles

• Neither is there good support for “standard” network operations and orchestration that you have in an IaaS type of setup

• It is not possible to add an interface to a running pod

• It is not possible to use the built-in load balancing mechanism towards these networks and interfaces

• It is not possible to use the L3 network policies to restrict communication between pods over these networks

• It is not trivial to add/remove a network to Kubernetes

• It can be nontrivial to separate traffic towards Kubernetes services and the service provider’s network services from services
reachable from the added networks

• Example: How are two default routes to different destinations over two different interfaces and networks managed?

Kubernetes and multi networking

• It is not easy to answer

• You can do this if you have complete control over the Kubernetes installation, basically a

“service provider” can provide a Kubernetes system that has these types of functions built

in and has added nonstandard network functionality

• We have done this at Kaloom

• You can today, not do this in a good way as a “normal” user, there is no support for the

network plumbing needed

• It is possible for a “service provider” to extend Kubernetes with functionality that provides these

capabilities though

Is it possible to design and instantiate a CNF like a

virtual router or load balancer in Kubernetes?

• There are different opinions reading this

• I am personally against it; I don’t believe that it makes sense

• Let the two type of systems develop in the way that is best for each system

• Openstack’s network service and APIs have been developed during many years and are stable, do

not touch them

• Invest in development efforts to find the best possible way for Kubernetes to support advanced

network services and orchestration

Should Openstack and Kubernetes have the same

network semantics, services and APIs in ?

• What is needed to support a typical container/Kubernetes based Networking Function?

• What is the best way to support these types of functions in Kubernetes

• Add an IaaS inspired network orchestrion functionality, services and APIs to Kubernetes?

• Extend the existing Kubernetes semantics

• Support for pods that have interfaces attaches to more than one networks

• Services with “VIP” addresses that can be used not only for the cluster network

• Network Policies that work across all the networks

• Support for ip addresses that are not set by “CNI”

• DHCP

• IPv6 autoconfigured addresses

• Addresses configured by the pod itself

• …

• This is the problem we must solve

• The challenge is how find ONE way to do this that is acceptable to the overall Kubernetes community

Where to go?

