

NETWORKING

Virtual Technical Meetings

Configuration Persistence Service in R8+

• Virtual Developer Design Forum (vDDF) / Oct 15, 2020 / version 12

NOKIA Ben Cheung (Nokia)

NOKIA Marge Hillis (Nokia)

Shankar N K (AT&T)

SATAT Ted Johnson (AT&T)

SATAT Claudio Gasparini

ERICSSON Tony Finnerty (Ericsson)

ERICSSON ▼ Toine Siebelink (Ericsson)

ERICSSON

Michela Bevilacqua (Ericsson)

ERICSSON ■ Rishi Chail (Ericsson)

Joachim Blixt

Pawel Slowikowski (Samsung)

Swami N (Wipro)

Bell Bruno Sakoto (Bell Canada)

Bell Philippe Leger (Bell Canada)

Bell Aditya Puthuparambil (Bell Canada)

Dell Auttya Futhuparambii (Beli Canaua)

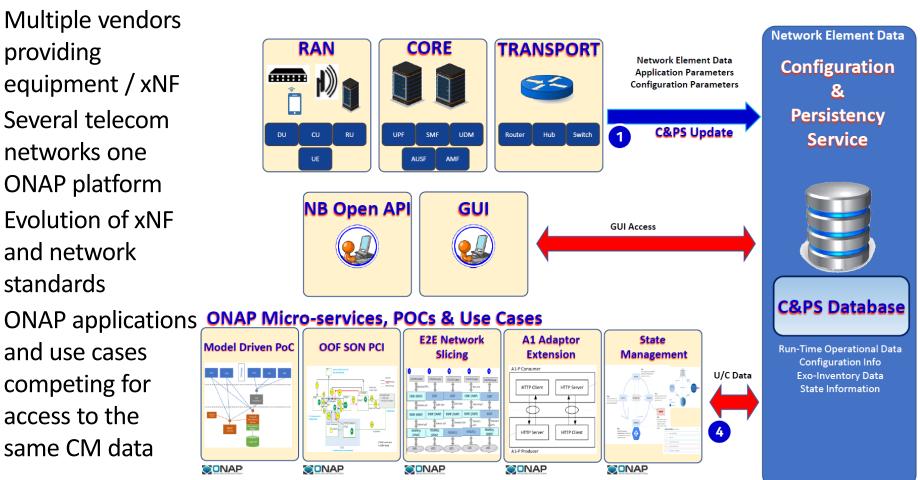
verizon Fred Feisullin (Verizon Wireless)

R8 DDF Presentation

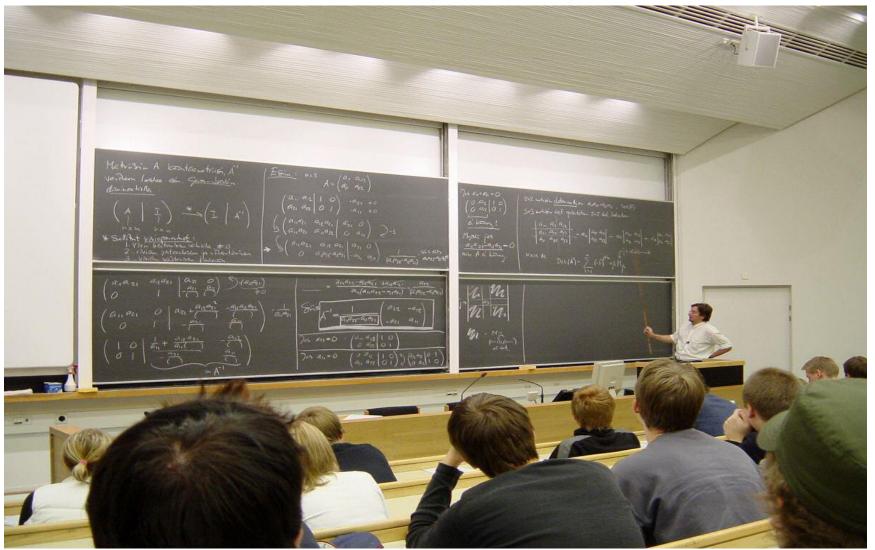
TIME	AUG 17, 2020 CPS REQUIREMENTS SubComm AGENDA
10 min	Context for CPS & Agenda – Context for CPS & Basic problems to be addressed
10 min	Overview of CPS – Overview to CPS
15 min	Model Driven CPS Proof of Concept (PoC) & Demo – Overview of the Model- Driven CPS PoC for R7
5 min	R8 & Beyond Roadmap – Model Driven Proof of Concept (PoC) in R7, way forward in R8 Honolulu, New plan & roadmap
10 min	Use Cases using CPS Database – Overview of CPS Applications (State Mgmt)
10 min	Questions & Answers – Q&A

TIME	Q&A Session Post-Session	
-	Follow-up questions – Follow-up meetings at CPS Team Call (Fridays)	

Context for Configuration Persistence Service (CPS)

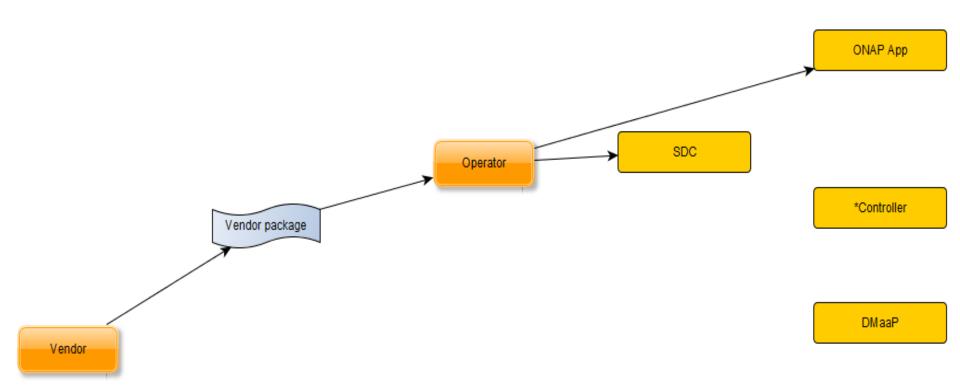


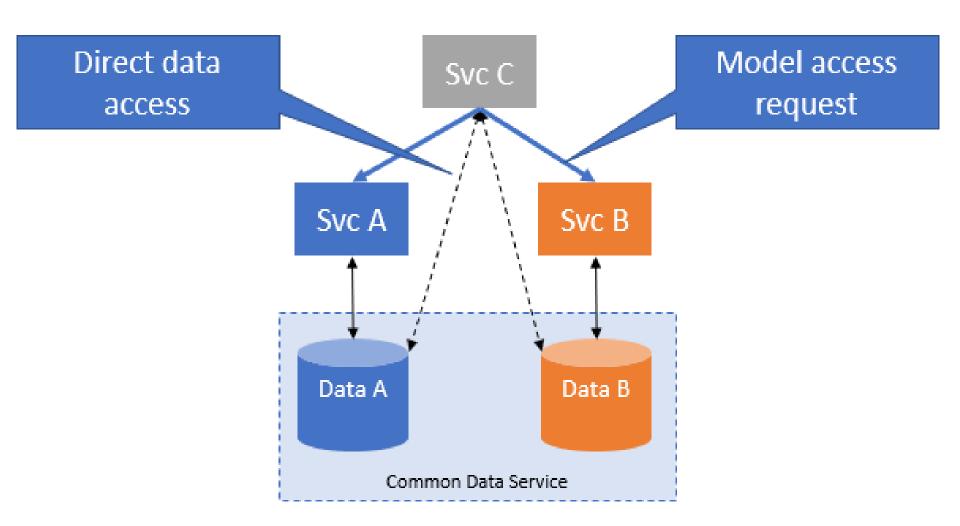
TOPIC	PROBLEM	SOLUTION
Heterogeneous Data Sources	Reconciling Multiple domains, multiple vendors, multiple functions and multiple versions	Model Driven Persistence
Shared Data Access	Expensive IO operations that should be shared rather than duplicated	Share Data access through model ownership
Model Handling	Because of the heterogeneous data sources need streamlined approach to support models without having platform life cycle events.	Model Driven Persistence

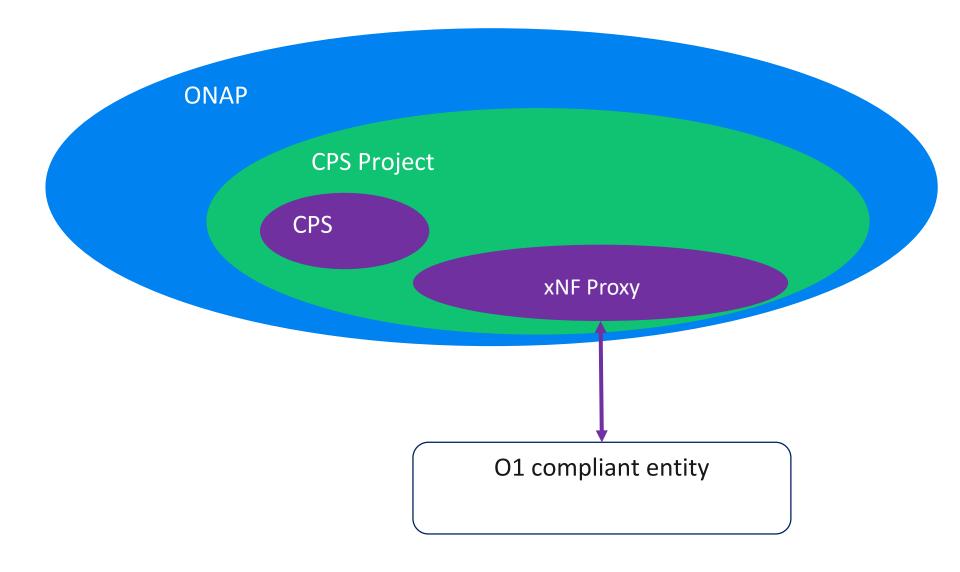


- Multiple vendors providing equipment / xNF
- Several telecom networks one **ONAP** platform
- Evolution of xNF and network standards
- and use cases competing for access to the same CM data

Shared data analogy of a teacher sharing knowledge with students


Model ingestion during ONAP design & run time ONAP App SDC Operator *Controller Vendor package OOM Administrator DMaaP ONAP Platform Vendor Standards Model **ONAP MODCOM** ONAP Design

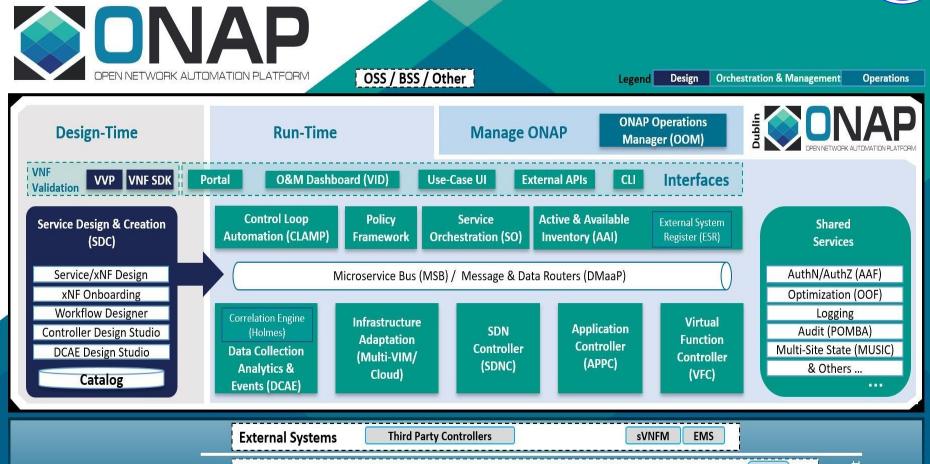

Model ingestion with C&PS solution (Run-time)

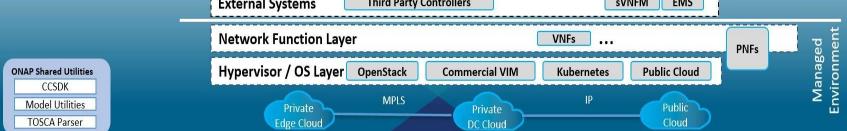


Permission & Ownership of data

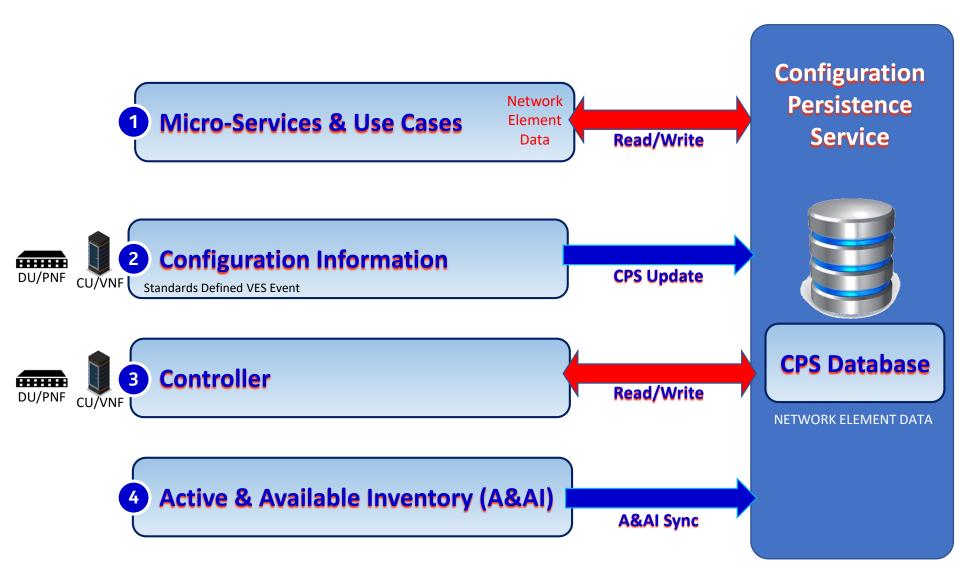
Overview for Configuration Persistence Service (CPS)

Executive Summary - The Configuration Persistence Service (CPS) is a *real-time service* that is designed to serve as a data repository for Run-time Network Element (configuration) data that needs to be persistent applicable to multiple domain (RAN, Transport, and Core). This was explored as a R7 PoC. *Focus on storing run-time DATA RELATED to NETWORK ELEMENT instances.* In R8, this is being proposed as a <u>stand-alone project</u>.

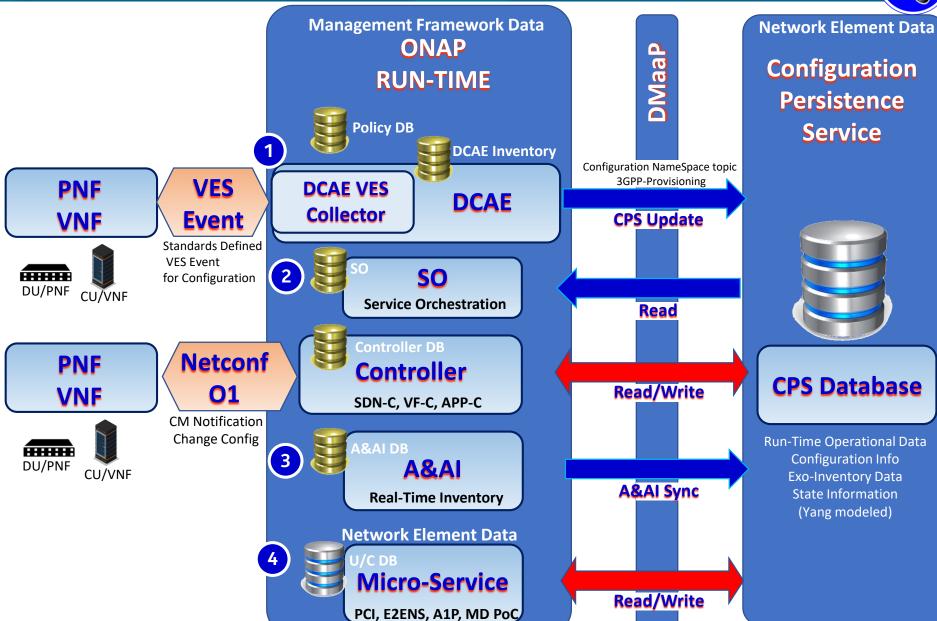

Business Impact - The ability for service operators to <u>visualize and manage network element</u> <u>data in a network (PNFs, VNFs, and logical constructs)</u> with ONAP is a critical business function because they are key Life Cycle Management (LCM) and OA&M operations. The project has business impacts to enhance the operation of data-handling within ONAP by providing efficient data layer services.


Business Markets - This project applies to any domain (wireless, transport, optical, and wireline) that ONAP may manage. It is not a market or geographical specific capability. It is expected that scaled ONAP installations such as Edge & Core ONAP deployments will also deploy the database across each installation. **Funding/Financial Impacts** - This project represents a large potential Operating Expense (OPEX) savings for operators because of the ability to configure networks saving time and expenses.

CPS in Architecture Context



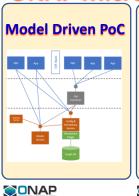
Configuration Persistence Service (CPS)

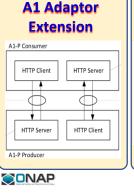


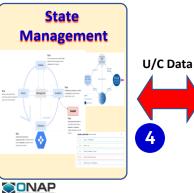
Configuration Persistence Service (CPS)

Configuration Persistence Service (CPS)

Network Element Data **Application Parameters Configuration Parameters**


CPS Update


GUI Access


ONAP Micro-services, POCs & Use Cases

Network Element Data

Configuration **Persistence Service**

CPS Database

Run-Time Operational Data Configuration Info Exo-Inventory Data State Information

CPS READING: PNF Reports Configuration

PNF VES Event

Standards Defined VES Event for Configuration

The PNF has a parameter update to report. The update originates from the PNF and is reported through a Standards Defined VES event with a configuration NameSpace (3GPP-Provisioning)

ONAP RUN-TIME

DCAE VES Collector DCAE

Analytics

DCAE Inventory

DMaaP

Configuration NameSpace topic 3GPP-Provisioning

CPS Update

Standards Defined VES Event is received by the *DCAE VES Collector*. DCAE publishes the VES Event onto the DMaaP Bus.

In R8+: CPS as a stand-alone component, subscribes to the DMaaP Topic and gets the DMaaP event from the DMaaP bus to update the internal database. The VES event has a Configuration namespace topic, 3GPP-Provisioning

Configuration
Persistence
Service

CPS Database

Run-Time Operational Data Configuration Info Exo-Inventory Data RT Logical & Physical Connections

A&AI Synchronization

ONAP RUN-TIME

DMaaP

Configuration
Persistence
Service

(1) During Network setup
"getall" retrieves from A&AI the
ENTIRE A&AI graph. Used to
setup the initial view of CPS
(2) Updates additions/deletions
of xNFs. "AAI-Event" (operation
Addition / delete)

In R8+: CPSDB is a stand-alone component. Performs "getall" A&AI update and atomic A&AI update. Atomic "updates" from A&AI add/remove of xNF is published by A&AI as an update on DMaaP bus

CPS Database

Run-Time Operational Data Configuration Info Exo-Inventory Data RT Logical & Physical Connections

A&AI Sync

CPS WRITING: Micro Service Update

ONAP RUN-TIME

DMaaP

Configuration
Persistence
Service

In R8+: CPSDB is a stand-alone component. CPSDB subscribes to the DMaaP topic and gets the DMaaP event off the DMaaP bus to update itself.

CPS Database

Run-Time Operational Data Configuration Info Exo-Inventory Data RT Logical & Physical Connections

A Micro-Service, for example OOF/SON/PCI determines that

an update is needed to CPSDB

publishes to the DMaaP bus an

from operation/algorithm. It

update event.

Read/(Write)

CPS WRITING: From Controller SDN-C

ONAP RUN-TIME

DMaaP

Configuration **Persistence Service**

The Controller (SDN-C) also sends a message to the xNF to update the parameter. This may be done via NetConf/O1/Ansible

SO, Policy, or Control Loop has determined a parameter update is needed to the xNF. The Controller (SDN-C) eventually gets the configuration update. SDN-C publishes to the DMaaP bus a configuration update event.

R8+ The configuration & standards service as a stand-alone component subscribes to the DMaaP topic and gets the DMaaP event off the DMaaP bus to update the internal database. A configuration namespace topic is used, 3GPP-Provisioning

Read/Write

Configuration NameSpace topic

3GPP-Provisioning

DU/PNF

PNF

VNF

Netconf

01

CM Notification

Change Config

Controller DB

Controller

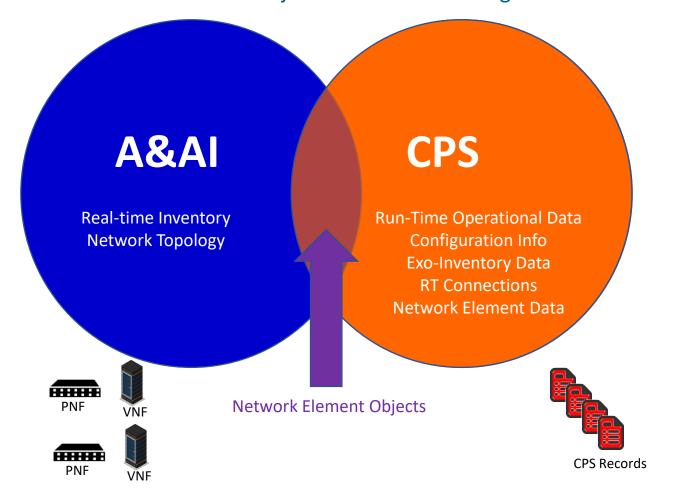
SDN-C, VF-C, APP-C

CPS Database

Run-Time Operational Data Configuration Info Exo-Inventory Data RT Logical & Physical Connections

xNF would may send a Standards Defined VES unless xNF configured to suppress event on ONAP origination

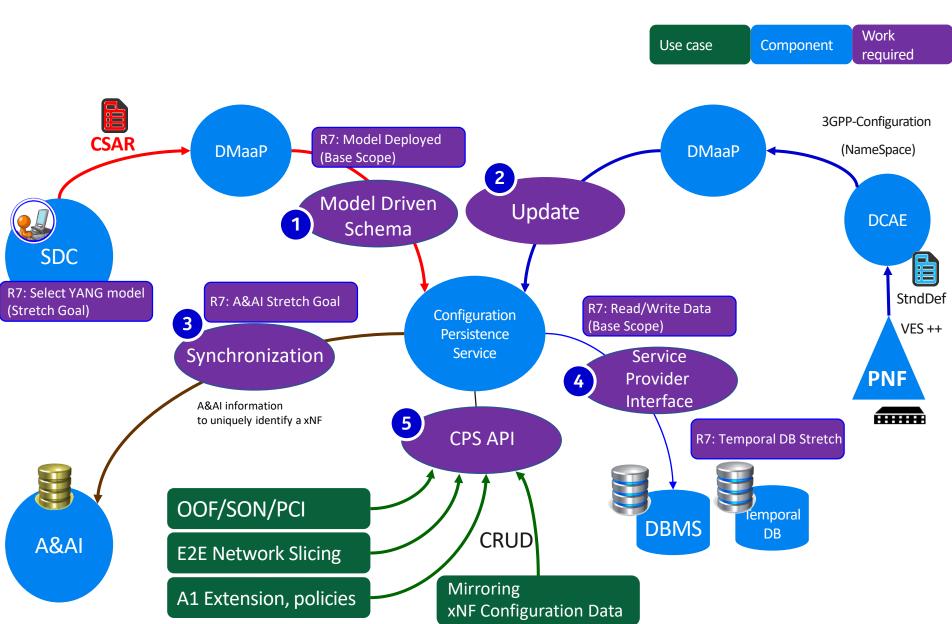
back from the xNF that the parameter change was


Controller (SDN-C) gets an ACK successful.

A&AI vs CPS

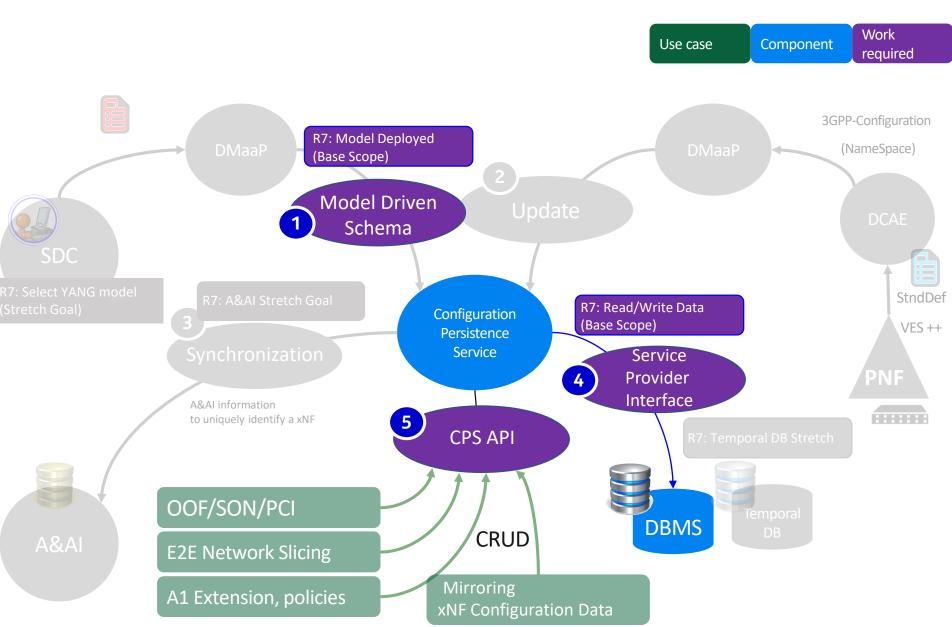
Concepts – A&AI conceptually stores Real-time inventory view of connected and "topology" of xNFs that ONAP sees. CPS stores Network Element Data. A&AI and CPS overlaps because they both need to know about Network Element objects so that can managed & orchestrated.

R7 Model Driven Proof of Concept for Configuration Persistence Service (CPS)



Proof Points for PoC

- Demonstrate write/read operations for YANG data fragments using CPS and store them in a DB with a very simple generic schema
- 2. Demonstrate ability to deploy / upgrade YANG models at runtime
- 3. Demonstrate CPS behavior driven by YANG model
- 4. Provide architecture vision and roadmap for a target architecture, supported use cases, non-functional requirements towards an ONAP Project



Community Involvement & Resourcing

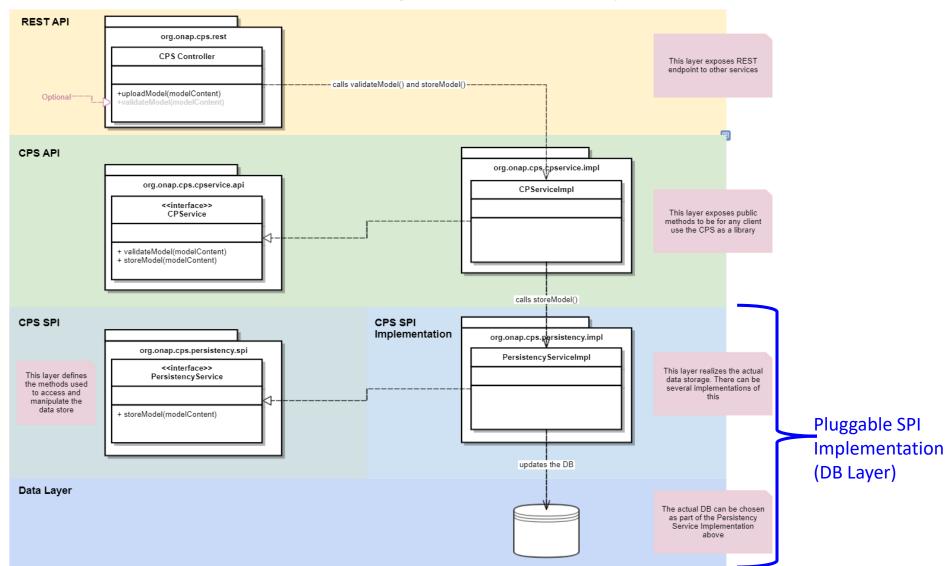
- Weekly ONAP meeting hosted by Ben Cheung (Nokia)
- PoC discussed with and approved by TSC
- ONAP R8 Honolulu Project proposal accepted
 - Use Cases & requirements : <u>Configuration Persistence Service (CPS)</u>
- CPS presentations in many fora, O-Ran PlugFest, LFN Design Developer Forum (DDF) etc.
- Resourcing
 - Ericsson 3 full-time developers
 - Bell Canada 3 part-time developers
- Jira backlog, team ceremonies like scrums etc. established
 - <u>Developers Landing Page</u>

PoC Ways of Working

• Base : N/A (new code)

Main dependency: ODL Yang Tools 5.x (probably) https://javadoc.io/doc/org.opendaylight.yangtools

 Design and Architecture discussions ongoing https://wiki.onap.org/display/DW/Issues+decisions+and+assumptions


8	1	MEDIUM	Existing Yang Parser	Is there an existing Yang Parser in ONAP an/or OpenDayLight that can be used for C&PS	No	
9	N/A	AGREED	Location of PoC Code	Dan Timony suggested to use and existing CCSDK repo, he mentioned ccsdk/features. As long as the PoC remains completely independent and doesn't affect delivery of existing artifacts in the same repo.		ccsdk/features, see https://gerrit.onap.org/r/c/ccsdk/features/+/110385 (awaiting approval)
10	N/A	AGREED	Common information model, Data lake and Access control	How will the CPS help with managing coupling between ONAP components that make use of data lake and common information model		We will start with Architectural Approach A in the PoC with the aim of fully supporting Architectural Approach C. I.e. access to the data lake will be conditional on permission granted by the data owner. In the PoC we will not implement the permission granting mechanism
11	4,5	MEDIUM	Transactional behavior	It needs to be clear to users the level of atomic operations supported by the CPS	Yes	

Architecture designed & implemented

Implementation Status

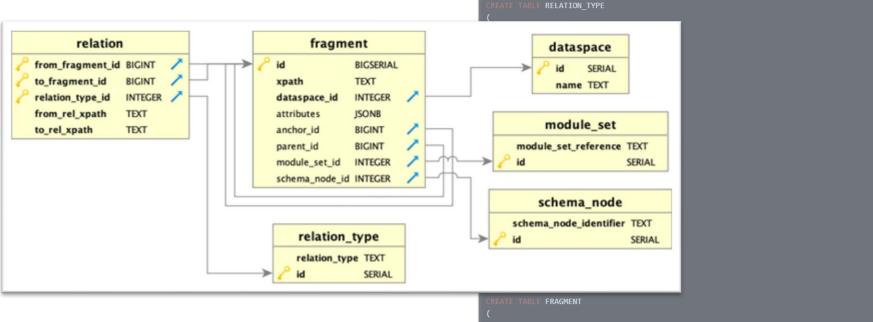
- PoC being developed on Nordix Branch to avoid impacts on production code in CCSDK Repo
- Project structure set up completed
 - Following ONAP standards and conventions
 - Production code Quality (SonarQube & Checkstyle)
- ODL Yang Tools integrated
 - Parsing of Yang models
 - Parsing of Yang data, JSON or XML with validation for given Yang model
- First E2E iteration of 2 use cases completed
 - Upload & Validate Yang Model (part of proof point 2)
 - Upload JSON Data Object (part of proof point 1

REST API Proposal

CPS API

Configuration and Persistence Service API

Created by CPS <u>Apache License Version 2.0</u>


cps-resource : cps Resource	Show/Hide List Operations	Expand Operations
/api/cps/v1/dataspaces/{dataspace-id}/anchors		getAnchors
/api/cps/v1/dataspaces/{dataspace-id}/anchors		createAnchor
/api/cps/v1/dataspaces/{dataspace-id}/anchors/{anchor-id}		deleteAnchor
/api/cps/v1/dataspaces/{dataspace-id}/anchors/{anchor-id}		getAnchor
/api/cps/v1/dataspaces/{dataspace-id}/modules		getModule
/api/cps/v1/dataspaces/{dataspace-id}/modules		createModeule
/api/cps/v1/dataspaces/{dataspace-id}/modules/namespace/{namespace-id}	getModuleForN	lamespaceDataspace
GET /api/cps/v1/dataspaces/{dataspace-id}/modules/namespace/{namespace-id}/re	vision/{revision}	
	getModuleForNamespa	ceDataspaceRevision
/api/cps/v1/dataspaces/{dataspace-id}/nodes		createNode

[BASE URL: / , API VERSION: 1.0]

Generic Schema Design Finalized

- Can store any modelled data
- Portable, can easily be adapted to any DB technology

```
CREATE TABLE FRAGMENT

(

ID BIGSERIAL PRIMARY KEY,

XPATH TEXT NOT NULL,

DATASPACE_ID INTEGER NOT NULL REFERENCES DATASPACE(ID),

ATTRIBUTES JSONB,

ANCHOR_ID BIGINT REFERENCES FRAGMENT(ID),

PARENT_ID BIGINT REFERENCES FRAGMENT(ID),

MODULE_SET_ID INTEGER REFERENCES MODULE_SET(ID),

SCHEMA_NODE_ID INTEGER REFERENCES SCHEMA_NODE(ID)

);

CREATE TABLE RELATION

(

FROM_FRAGMENT_ID BIGINT NOT NULL REFERENCES FRAGMENT(ID),

TO_FRAGMENT_ID BIGINT NOT NULL REFERENCES FRAGMENT(ID),

RELATION_TYPE_ID INTEGER NOT NULL REFERENCES RELATION_TYPE(ID),

FROM_REL_XPATH TEXT NOT NULL,

CONSTRAINT RELATION_PKEY PRIMARY KEY (TO_FRAGMENT_ID, FROM_FRAGMENT_ID, RELATION_TYPE_ID)
```


Early Performance Indicators (DB) (proof point 4)

- Insert
 - 450 records/sec (up to 2M records)

- Queries
 - XPath Query (while loading new data) < 100ms
 - Tree-Walk (75K objects) count with condition < 1,000ms

- Delete
 - Delete Tree of 75K objects incl. constraint checks ~ 6 sec

Demos

1. JSON Data

- 1. Upload valid JSON, store in DB
- 2. Handle invalid JSON

2. Yang Model File (modules)

- 1. Valid model file, store in DB
- 2. Handle invalid model

3. Split JSON data for given model

- 1. Split into 'fragments' ready for generic DB
- 2. Handle model change

TOPIC	PoC RESULTS
SEED CODE	Seed Code to serve as a basis for CPS has been developed
PROOF POINTS	 Create/read CRUD operations using YANG fragments using a simple schema or schema-less repository Deploy & upgrade YANG model fragments at run-time Validate based on YANG Constraints Provide architecture vision and roadmap for a target architecture.
ARCHITECTURE AGREEMENTS	Resolve key architectural Issues necessary for CPS as a stand- alone project
CPS CORE FUNCTIONALITY	Can demonstrate some key CPS operations; basic E2E & integration of Yang parser
PERFORMANCE LIMITS	Early performance indicators tested using generic schema with json-blob storage for attributes

Roadmap for Configuration Persistence Service (CPS)

June 202

CPS Roadmap & R6-R8 Plan

Configuration Persistence Service (CPS) Roadmap –

R6 Frankfurt

R7 Guilin

December,

2020

R8 Honolulu

CPS 1.0

R6 CPS

- CC-SDK/SDN-C solution
- Evolution of "ConfigDB"

Supporting R6 Use Cases:

SON/OOF/PCI U/C

CPS 1.1

R6 CPS Extensions

- Evolution of CC-SDK/SDN-C solution REQ322
- **Supporting R7 Use Cases:**
 - SON/OOF/PCI U/C
 - 5G E2E Network Slicing
 - A1 Policy extension (Ericsson)

Model-Driven PoC

- Write "base" CPS
- Write NE Data
- Read NE Data
- Access Control

State Management PoC

 State Management PoC (BellCA) self-contained

CPS 2.0

- → R8 CPS stand-alone project proposal
 - Deprecate CPS 1.0 & 1.1
 - Project proposals TSC/Architecture S/C
 - Setup Project Repo

CPS FUNCTIONALITY:

- Data Recovery
- Model Adaption (Dynamic Schema)

Legend:

RED text is CC-SDK/SDN-C solution
BLUE text is the PoC & stand-alone project

June 202:

CPS Roadmap & R8-R10 Plan

Configuration Persistence Service (CPS) Roadmap –

R8 Honolulu

R9 Istanbul

R10 Kyoto

CPS 2.0

R8 CPS stand-alone

project proposal

- Deprecate CPS 1.0 & 1.1
- Project proposals
 TSC/Architecture S/C
- Setup Project Repo

CPS FUNCTIONALITY:

- Data Recovery
- Model Adaption (Dynamic Schema)

Rx (future) development

CPS FUNCTIONALITY

- Data Auditing Model driven
- Topology Traversal
- Data Syncing

Rx (future) development

CPS FUNCTIONALITY

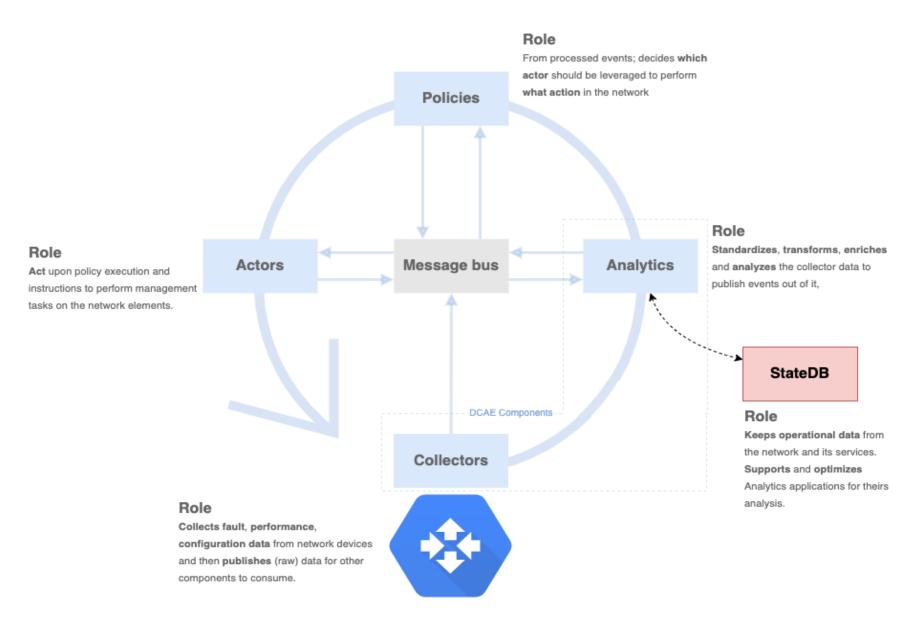
- Data Auditing Rules
 Driven
- Data History
- Roll-Back
- Database Backup
- Performance Optimization (Scaling)

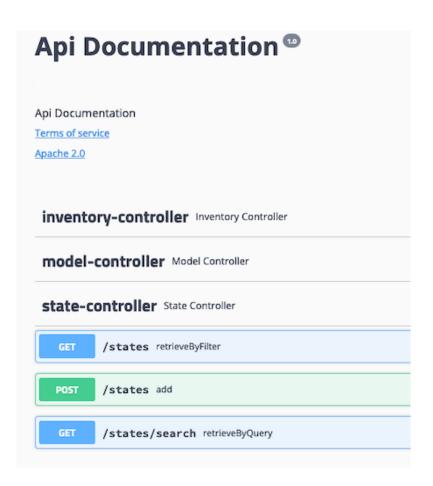
Legend:

RED text is CC-SDK/SDN-C solution

BLUE text is the PoC & stand-alone project

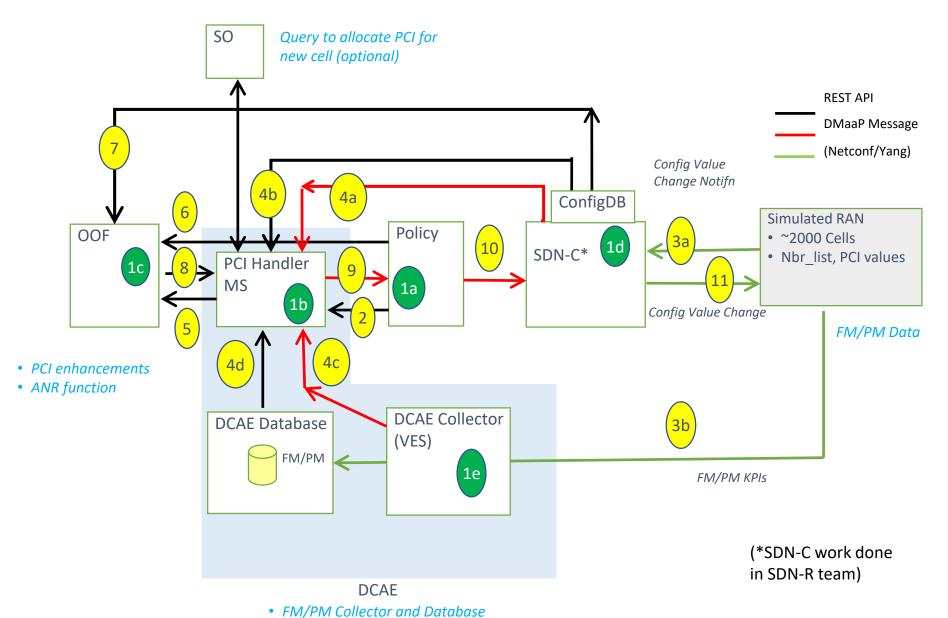
State Management Use Case for Configuration Persistence Service (CPS) in R8







Use Cases for Configuration Persistence Service (CPS)



CPS Use Cases and Proof of Concepts in R8

5G USE CASE	DESCRIPTION
STATE MANAGEMENT POC	Bell Canada led PoC for State tracking and State management using CPS Integration with CPS (as a platform). Have the State management S/W now work with CPS using available swaggers/APIs
OOF - SON (5G)	Optimization and SON functions for 5G RAN. Self-optimization, Self-Healing, Self-configuration.
NETWORK SLICING (5G Use Case)	Network Slicing defines Slices for 5G RAN systems. Network Slicing is a long-lead (multi-release) development. (will be presented in its own lecture at the Virtual Face to Face)
MOBILITY STANDARDS HARMONIZATION/ A1 adapter	A1 adapter: Enhancing the A1 adapter/interface capabilities in ONAP to manage A1 Policies, support multiple A1 targets in the RAN and multi-version A1 interface for different A1 targets, introduce secure TLS communication.

OOF / SON / PCI Use Case

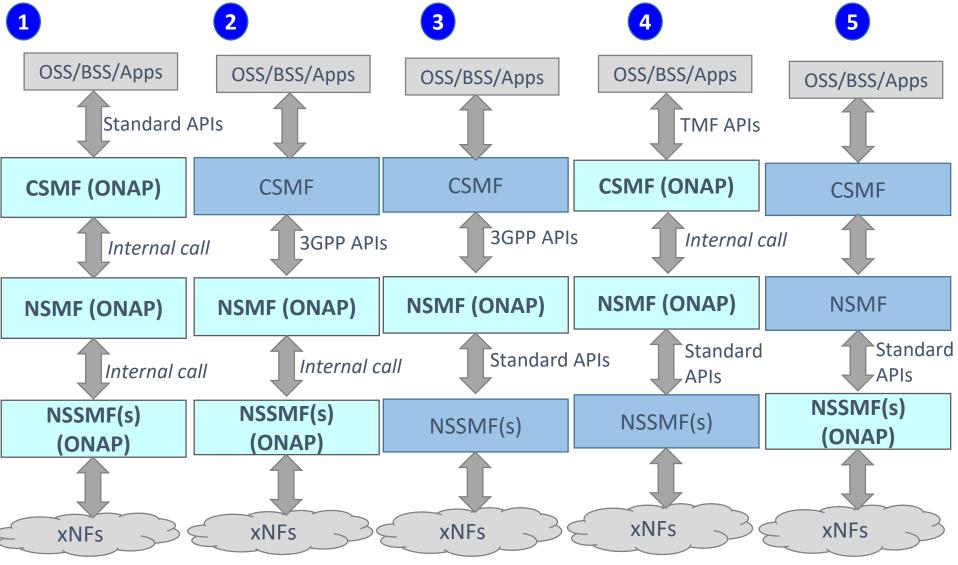
OOF / SON / PCI Use Case

- Config DB (MariaDB) used by PCI-H-MS (step 4b) and OOF (step 7)
- Query API (swagger JSON spec) exposed to other ONAP modules
- cellId needs to be globally unique (assumed eCGI) and align with ONAP YANG model, ORAN, 3GPP
- pnf-name indicates netconf server to be used for interactions regarding cells
- Pnf object (pnf-name, pnf-id) to be aligned with A&AI (A&AI/ConfigDB interaction to be finalized in Dublin release)

Cell (Object)		
Attribute	Format	
networkld	string	
cellId	string	
pciValue	uint64	
nbrList	list of cellId	
lastModifiedTS	timestamp	
pnf-name	string	

	α		
nnt			
pnf	-	CLL	

Attribute	Format
pnf-name	String
cells	List of cellID's
lastModifiedTS	timestamp

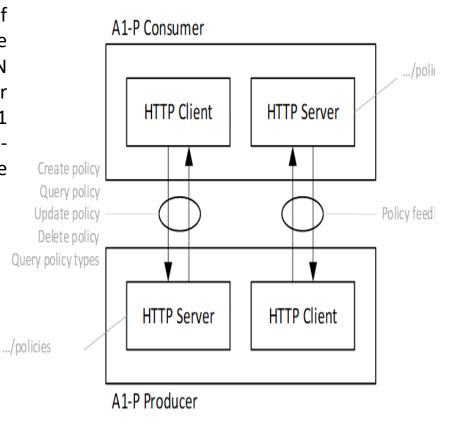

ConfigDB API

API	Input	Output
GET cellList	networkld, ts	List of cellIds
GET PCI	cellid, ts	PCI Value
GET nbrList	cellId, ts	List of cellIds and their PCI values
GET pnf- name	cellID, ts	pnf-name

End to End Network Slicing Use Case

3rd party component

End to End Network Slicing Use Case


NetworkSlice	Network Slice NRM	operationalState
NetworkSlice	Network Slice NRM	administrativeState
NetworkSlice	Network Slice NRM	serviceProfileList
NetworkSlice	Network Slice NRM	networkSliceSubnetRef
NetworkSliceSubnet	Network Slice NRM	operationalState
NetworkSliceSubnet	Network Slice NRM	administrativeState
NetworkSliceSubnet	Network Slice NRM	nsInfo
NetworkSliceSubnet	Network Slice NRM	sliceProfileList
NetworkSliceSubnet	Network Slice NRM	managedFunctionRef
NetworkSliceSubnet	Network Slice NRM	networkSliceSubnetRef
ServiceProfile	Network Slice NRM	serviceProfileId
ServiceProfile	Network Slice NRM	sNSSAIList
ServiceProfile	Network Slice NRM	pLMNIdList
ServiceProfile	Network Slice NRM	perfReq
ServiceProfile	Network Slice NRM	maxNumberofUEs
ServiceProfile	Network Slice NRM	coverageAreaTAList
ServiceProfile	Network Slice NRM	latency
ServiceProfile	Network Slice NRM	uEMobilityLevel
ServiceProfile	Network Slice NRM	resourceSharingLevel
ServiceProfile	Network Slice NRM	sST
ServiceProfile	Network Slice NRM	availability
SliceProfile	Network Slice NRM	sliceProfileId
SliceProfile	Network Slice NRM	sNSSAIList
SliceProfile	Network Slice NRM	pLMNIdList
SliceProfile	Network Slice NRM	perfReq
SliceProfile	Network Slice NRM	maxNumberofUEs
SliceProfile	Network Slice NRM	coverageAreaTAList
SliceProfile	Network Slice NRM	latency
SliceProfile	Network Slice NRM	uEMobilityLevel
SliceProfile	Network Slice NRM	resourceSharingLevel

A1 Policy Extension ORAN-ONAP Harmonize

Executive Summary - This requirement enhances the A1 adapter/interface capabilities provided in Rel as part of 5G/ORAN & 3GPP Standards Harmonization requirement (REQ-38). O-RAN has defined A1 interface specification in the context of the management of 5G RAN elements to provide intent based policies for optimization of the RAN network performance. Planned enhancements for Rel 7 include additional support for managing A1 Policies, multiple A1 targets in the RAN, multiversion support for different A1 targets, and secure TLS communication.

Appendix

Benjamin Cheung

Access, Syncing, Indexing Runtime Config DB

ACCESS TO CPS Database (READ/WRITE):

READ ONLY - Run-Time parameters can be READ by any ONAP platform component and any ONAP plug-in. Examples of ONAP platform components are A&AI, SDC, SDNC etc.

READ/WRITE - Parameters can be READ/WRITE from Controllers, DCAE (future), VES Collector/DMaaP, A&AI, Policy/CLAMP (future) and other components with permission settings.

DEFAULT - SO (future), DCAE, A&AI (indirectly), Controllers (CDS, APPC, SDNC) will have default read/write access to CPS Database

DEFINABLE - Other components will have default read-only access to Configuration Persistence Service but can be given Read/Write access on a per record basis.

SYNCING NEW XNF ADDED or DELETED (A&AI):

ELEMENT SYNC - Software keeps the A&AI elements with the elements in the RunTime Config DB in Sync. When the network first being established, a *GetAlIPNFs* function from A&AI can be used on startup.

A&AI - A&AI is still the master of valid entities in the network and provides a dynamic view of the assets (xNFs) available to ONAP

CPS Database - The CPS Database is a master of the associate (exo-inventory) data associated with the entities.

DYNAMIC VIEW - When a xNF appears or is removed from the system, CPS Database records will be added/removed based on A&AI entries.

LOGIC - When a xNF appears is removed there is logic to determine how and when something is to be updated. There is some intelligence to know what elements of update.

INDEXING:

INDEXING - Data Records will be indexed by xNF (VNF, PNF, ANF). It would be an objective to have a similar indexing mechanism as A&AI. May also need an index to be a logical object ID.

RETRIEVAL - How are data records retrieved efficiently. This relates how the records are indexed.

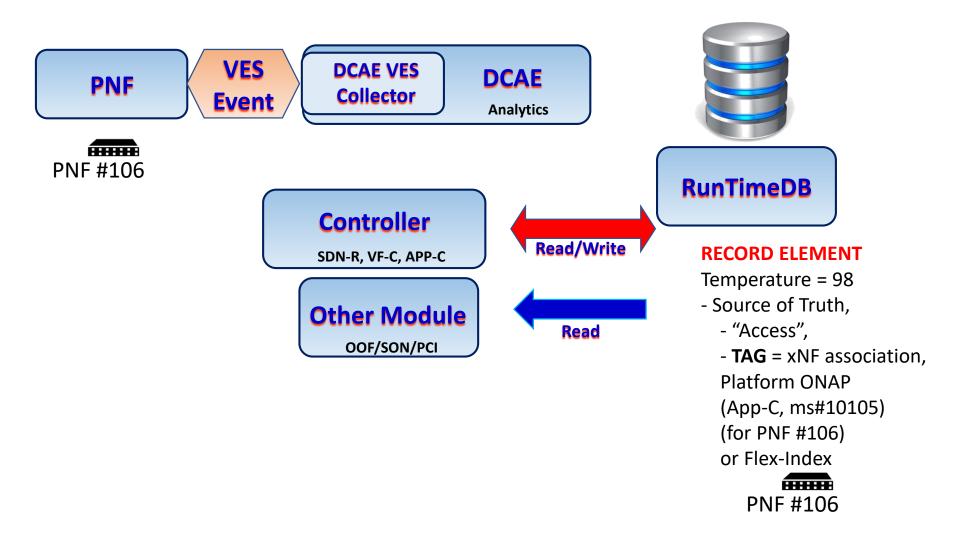
Dependencies vs Scope

<u>DEPENDENCIES</u> – need to operate

SDC Yang Model (to load schema)
ability to process & translate yang models into schemas
AAF (intra-ONAP security)
Database implementation for Data Persistence
(for example MariaDB)

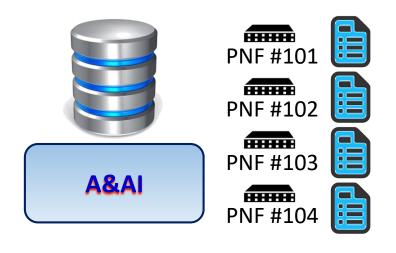
DMaaP (some use cases to work / indirect dependency)

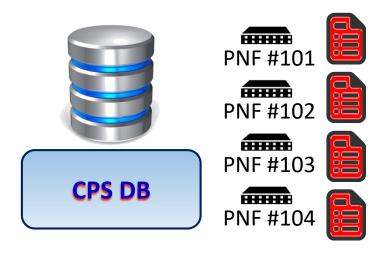
SCOPE

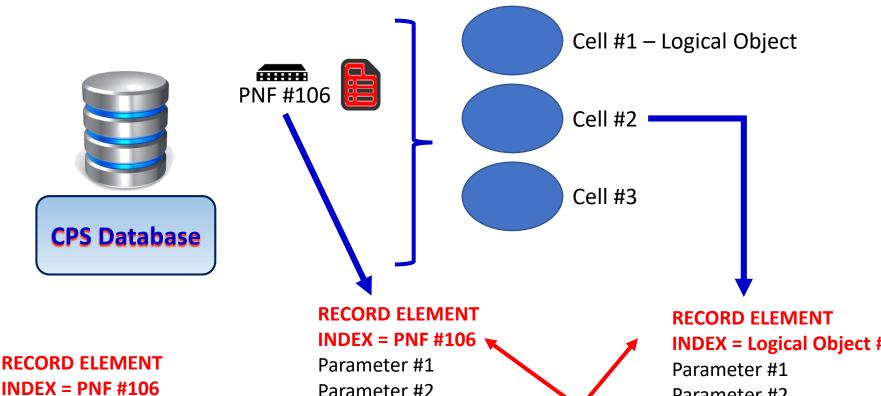


CPS Database

RECEIVE INFORMATION
WRITE INFORMATION
PUBLISH CHANGES
REFERENTIAL INTEGRITY
INGEST PACKAGES
LOGICAL OBJECTS
ASSOCIATIONS
CARDINALITY RULES
LINKING RESTRICTIONS
SYNCHRONIZATION
DATA INTEGRITY & RECOVERY




Configuration Persistence Service (Run-Time)



A&AI correlated/Index to RunTimeDB
Publish changes in A&AI, notification on DMaaP

Indices into Configuration Persistence Service may also use Flex-Index (such as CellID)

CPS Database (Run-Time View)

{ Logical Object #111 Cell #2 }

Parameter #3

Associations

State Info X.733

Cardinality Rules

Linking Restrictions

INDEX = PNF #106

Parameter #1

Parameter #2

Parameter #3

Logical object, Cell #1

Cell Parameter #1

Cell Parameter #2

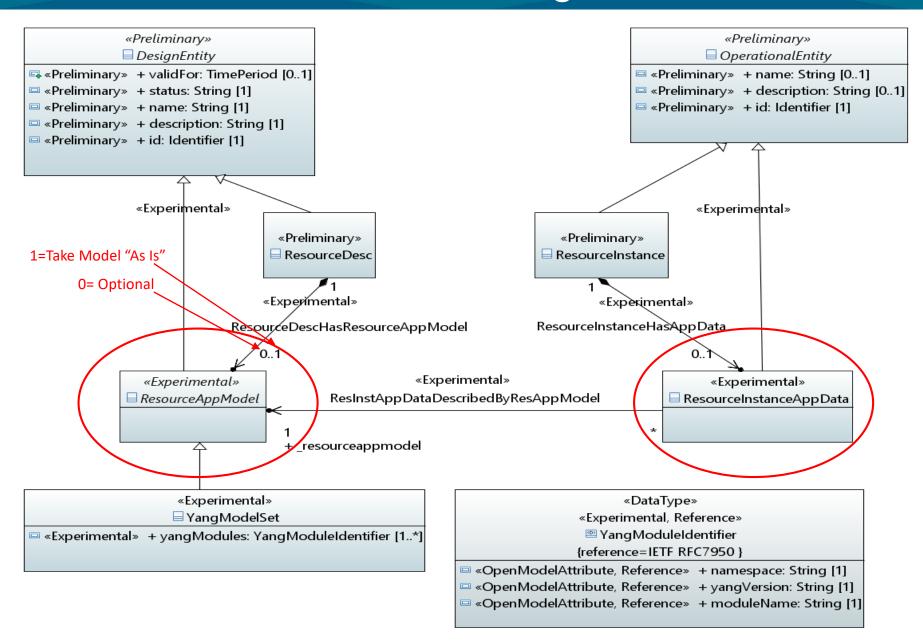
Cell Parameter #3

INDEX = Logical Object #111

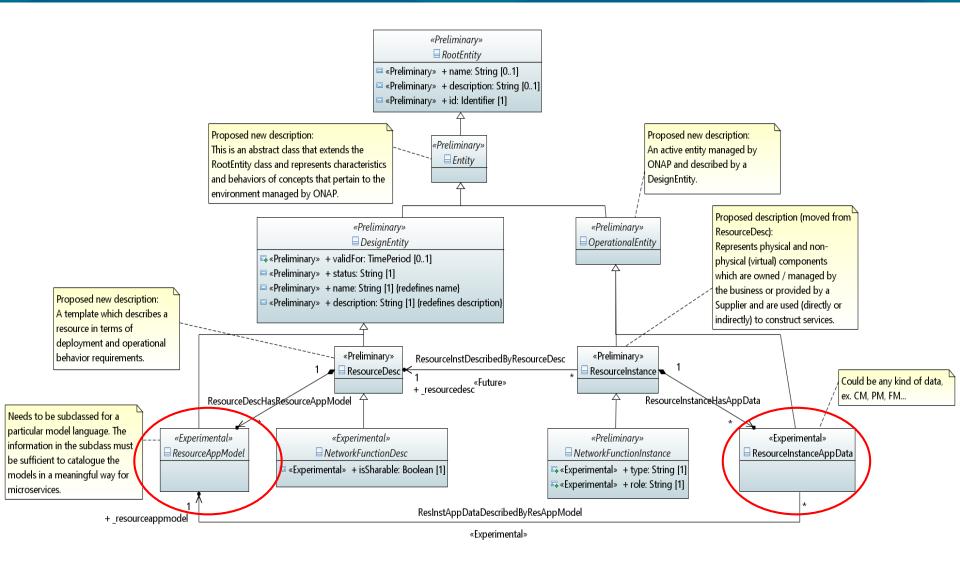
Parameter #2 Parameter #3 State Info

Associations

{ PNF #106 }


Cardinality Rules

Linking Restrictions



CPS Information Model Design R7

CPS Information Model Design R8

