
CPS Model Driven PoC

Tony Finnerty; Ciaran Johnston
Date , June 25 2020



Heterogeneous networks (that evolve!)

• Multiple vendors 
providing equipment / 
xNF

• Several telecom 
networks one ONAP 
platform

• Evolution of xNF and 
network standards

• ONAP applications and 
use cases competing for 
access to the same CM 
data



Blackboard pattern (for many consumers)



YANG (Netconf modelling language)

• Industry momentum towards YANG

• IETF RFC, widely supported

• Superset of most language capabilities

• Primary input and native language of the CPS
- Other languages would need to be translated before being deployed



ONAP Design time model handling



Runtime deployment of models



Model driven safe access to data

• Model defines constraints to the data

• CPS enforces those constraints during access

• Developer efficiency

• Consistency of approach

• Lower maintenance costs; higher quality applications



Target

• [Base scope] Read/write persisted Configuration Management data:
- defined by xNF, published as YANG 
- Models deployed @ runtime with no ONAP platform impacts or LCM events
- Show the benefits in terms of constraint validation, access and upgrade 

• [Stretch target] Adapt behaviour of CPS on read/write based on 
information in the model
- Change notification emissions
- Interaction with temporal data store, synergise with State Management PoC
- Volatile xNF data read-through (e.g. state data)

• Seed code for stand-alone CPS project in ONAP



Proof points for base scope

• Demonstrate Create/read operations using YANG fragments against a 
CPS backed by very simple schema / schema-less repository

• Demonstrate ability to deploy / upgrade YANG fragments at runtime

• Demonstrate CPS behavior driven by YANG model

• Provide architecture vision and roadmap for a target architecture, 
supported use cases, non-functional requirements towards an ONAP 
Project



Context

• Models provided by 
SDC (and controllers)

• Applications query 
models to take 
advantage of safe 
data access

• OLTP is primary/first 
focus

• State (volatile) pass-
thru for convenience

• Other DB 
technologies: loosely 
coupled via model 
driven change 
notifications



Main interfaces and modules

• Sample deployment 
view

• Core functionality 
and REST interface 
are separate 
modules

• DBMS access via a 
Service Provider 
Interface

• Model handling will 
depend on 
interfaces and type 
safety – does not 
need to be in POD

• xNF State reader is 
for information only, 
not likely to be part 
of PoC

• DBMS is in own 
POD



Example of generic schema for relational DB



Models at design and runtimes

• The runtime, at the bottom, 
involves parsing, mapping 
and storing – this is the 
CPS

• Design time activity is once 
off for each language to be 
supported

• Parsing coupled with 
language (YANG)

• Mapping coupled with 
language and internal 
representation (Generic 
schema)

• Generic schema coupled 
with DBMS technology

• CPS includes parsing and 
mapping

• The java representation (in 
Yang Parser) may be used 
directly to avoid serialization

• Not shown: CPS; SPI; 
Model repo; plug-ins; 
interfaces



Q&A

• I’ve spoken enough – now it’s your turn!


