
networking-vpp:
An OpenStack ml2

driver for VPP
Jerome Tollet / Ian Wells

FD.io Program | April 21st, 2020

fd.io Foundation 1

Agenda

• What is networking-vpp?

• Design principles

• Overall architecture

• Current feature set

• FDS/networking-vpp and OPNFV

• Thank You - OPNFV, Functest and Fuel (and Apex)

• Roadmap for 20.05

• Questions

fd.io Foundation 2

What is networking-vpp

• FD.io / VPP is a fast software dataplane that can be used to speed up
communications for any kind of VM or VNF.

• VPP can speed-up both East-West and North-South communications

• Networking-vpp is a project aiming at providing a simple, robust,
production grade integration of VPP in OpenStack using ml2 interface

• Goal is to make VPP a first class citizen component in OpenStack for NFV
and Cloud applications

fd.io Foundation 3

VPP L2 Switching

11,42

12,34

15,12

20,52

0 5 10 15 20 25

1M MACs

100K MACs

10K MACs

base (508 MACs)

Single core

Throughput (Mpps)

Intel CascadeLake@2.3GHz (Xeon 6252N), HyperThead on, TurboBoost off

mailto:CascadeLake@2.3GHz

VPP L3 Routing

17,11

18,54

18,43

19,32

16 16,5 17 17,5 18 18,5 19 19,5

2M FIBs

200K FIBs

20K FIBs

base (508 FIBs)

Single Core

Throughput (Mpps)

Intel CascadeLake@2.3GHz (Xeon 6252N), HyperThead on, TurboBoost off

mailto:CascadeLake@2.3GHz

VPP vhostuser (Phy-Virtual-Phy aka PVP)

2,552

3,167

4,163

0 1 2 3 4 5

dot1q-l2bd

eth-l2bd

eth-l2xc

Single core

Throughput (Mpps)

Intel CascadeLake@2.3GHz (Xeon 6252N), HyperThead on, TurboBoost off

mailto:CascadeLake@2.3GHz

Networking-vpp: Design Principles

• Main design goals are : simplicity, robustness, scalability

• Efficient management communications
• All communication is asynchronous

• All communication is REST based

• Robustness
• Built for failure – if a cloud runs long enough, everything will happen eventually

• All modules are unit and system tested

• Code is small and easy to understand (no spaghetti/legacy code)

Networking-vpp, what is your problem?

• You have a controller and you tell it to do something

• It talks to a device to get the job done
• Did the message even get sent, or did the controller crash first? Does the

controller believe it sent the message when it restarts?

• Did the message get sent and the controller crash before it got a reply?

• Did it get a reply but crash before it processed it?

• If the message was sent and you got a reply, did the device get programmed?

• If the message was sent and you didn’t get a reply, did the device get
programmed?

fd.io Foundation 9

Networking-vpp, what is your problem?

• If you give a device a list of jobs to do, it’s really hard to make sure it
gets them all and acts on them

• If you give a device a description of the state you want it to get to, the
task can be made much easier

fd.io Foundation 10

Networking-vpp: overall architecture

Compute Node

VPP

V
P

P
 A

ge
n

t
VM VM VM

vhostuser

Compute Node

VPP

V
P

P
 A

ge
n

t

VM VM VM

vhostuser

Neutron Server

ML2 VPP
Mechanism Driver

journaling

HTTP/json

dpdkdpdk

vlan / flat network

• Network types

• VLAN: supported since version 16.09

• VXLAN-GPE: supported since version 17.04

• Port types

• VM connectivity done using fast vhostuser interfaces

• TAP interfaces for services such as DHCP

• GSO support for increased endpoint performance

• Security

• Security-groups based on VPP stateful ACLs

• Port Security can be disabled for true fastpath

• Role Based Access Control and secure TLS connections for etcd

• Layer 3 Networking

• North-South Floating IP, SNAT

• East-West Internal Gateway

• Robustness

• If Neutron commits to it, it will happen

• Component state resync in case of failure: recovers from restart of
Neutron, the agent and VPP

• LACP bonding for uplinks, ECMP for L3

• TaaS

• Supported since version 18.10

• ERSPAN support since version 19.08.1

• Python3

• Support since version 19.01

• Python3 only since version 20.01

• API versioning

• Supported from version 20.01 onwards

• Check against installed API signature at agent startup

• Only whitelisted APIs allowed during runtime

FDS/networking-vpp and OPNFV

• Networking-vpp is part of OPNFV/FastDataStacks -
https://wiki.opnfv.org/display/fds

• Networking-vpp is included in os-nosdn-fdio-[noha|ha] scenario

• Initial engagement (2016):
• Work to integrate with Apex installer started from Colorado 1.0

• Was in Colorado 3.0 that we managed to pass release criteria tests and the
os-nosdn-fdio-noha scenario made it into OPNFV

fd.io Foundation 27

https://wiki.opnfv.org/display/fds

OPNFV FDS/ os-nosdn-fdio-[noha|ha] overall
architecture (Apex/Fuel)

fd.io Foundation 28

Timeline
• Apex/RH

• Colorado – 12/2016
• passed release criteria tests
• only non-HA scenario (os-nosdn-fdio-

noha)

• Danube – 04/2017
• HA scenario (os-nosdn-fdio-ha)

• Euphrates – 10/2017
• Bugfix release

• Fraser – 05/2018
• L3 integration

• Gambia – N/A -> Last available
release

fd.io Foundation 29

• Fuel
• Hunter – 05/2019

• L3 integration

• non-HA scenario

• Iruya – 01/2020
• Python3

• Jerma – sometimes in 2020

Thank You - OPNFV, Functest, Fuel (and Apex)

• Truly symbiotic relationship

• OPNFV gives us
• A production like environment for testing in addition to devstack based

testing
• Access to early upstream releases / an early warning system
• Ability to catch lots of issues during OPNFV release testing

• Manual as well as Functest
• Eg., Nova live migration, Trunk Port, L3, NAT and so on

• We contributed by finding & reporting issues across different projects
– Apex, Fuel, Functest, snaps, domino, orchestra, cloudify_ims
• Eg., SNAPS-185, FUNCTEST-970, APEX-468 etc

fd.io Foundation 30

An example – Fraser release

• networking-vpp = 15 bugs found
• VPP = 4 bugs found
• Apex = 11 bugs found
• Misc = 7 bugs found

NOTE: Functest helped catch close to 40% of bugs in
VPP/networking-vpp

fd.io Foundation 31

0

1

2

3

4

5

6

core L3/HA L3/NAT L3/FIP L3 VPP

Where were the bugs?

Bug Area

12

7

How were they found?

manual functest

Bugs found in Fraser : networking-vpp + VPP Analysis

Latest status – Iruya (Jan 2020)

• Installer = Fuel only

• VPP/networking-vpp version = 20.01

• OpenStack version = Stein

• Ubuntu Bionic

• Completely Python3 (Python 3.6)

fd.io Foundation 33

Networking-vpp: Roadmap / next steps

Next version will be networking-vpp 20.05
• https://launchpad.net/networking-vpp

• Bulk API calls
• Speed up reconfiguration after restart
• Support for bulk programming of ACLs using VPP async APIs

• Network APIs for new network types
• Provide interface to easily add new overlay types

• TaaS/ERSPAN
• Push changes upstream: ERSPAN APIs for OpenStack

• Testing, testing, testing
• Support HA scenario for Fuel

fd.io Foundation 34

https://launchpad.net/networking-vpp

Questions

35

