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What is networking-vpp

• FD.io / VPP is a fast software dataplane that can be used to speed up 
communications for any kind of VM or VNF.

• VPP can speed-up both East-West and North-South communications

• Networking-vpp is a project aiming at providing a simple, robust, 
production grade integration of VPP in OpenStack using ml2 interface

• Goal is to make VPP a first class citizen component in OpenStack for NFV 
and Cloud applications
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VPP L3 Routing
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VPP vhostuser (Phy-Virtual-Phy aka PVP)
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Networking-vpp: Design Principles

• Main design goals are : simplicity, robustness, scalability

• Efficient management communications
• All communication is asynchronous

• All communication is REST based

• Robustness
• Built for failure – if a cloud runs long enough, everything will happen eventually

• All modules are unit and system tested

• Code is small and easy to understand (no spaghetti/legacy code)



Networking-vpp, what is your problem?

• You have a controller and you tell it to do something

• It talks to a device to get the job done
• Did the message even get sent, or did the controller crash first?  Does the 

controller believe it sent the message when it restarts?

• Did the message get sent and the controller crash before it got a reply?

• Did it get a reply but crash before it processed it?

• If the message was sent and you got a reply, did the device get programmed?

• If the message was sent and you didn’t get a reply, did the device get 
programmed?
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Networking-vpp, what is your problem?

• If you give a device a list of jobs to do, it’s really hard to make sure it 
gets them all and acts on them

• If you give a device a description of the state you want it to get to, the 
task can be made much easier
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Networking-vpp: overall architecture
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• Network types

• VLAN: supported since version 16.09

• VXLAN-GPE: supported since version 17.04

• Port types

• VM connectivity done using fast vhostuser interfaces

• TAP interfaces for services such as DHCP

• GSO support for increased endpoint performance

• Security

• Security-groups based on VPP stateful ACLs

• Port Security can be disabled for true fastpath

• Role Based Access Control and secure TLS connections for etcd

• Layer 3 Networking

• North-South Floating IP, SNAT

• East-West Internal Gateway

• Robustness

• If Neutron commits to it, it will happen

• Component state resync in case of failure: recovers from restart of 
Neutron, the agent and VPP

• LACP bonding for uplinks, ECMP for L3

• TaaS

• Supported since version 18.10

• ERSPAN support since version 19.08.1

• Python3

• Support since version 19.01

• Python3 only since version 20.01

• API versioning

• Supported from version 20.01 onwards

• Check against installed API signature at agent startup

• Only whitelisted APIs allowed during runtime



FDS/networking-vpp and OPNFV

• Networking-vpp is part of OPNFV/FastDataStacks -
https://wiki.opnfv.org/display/fds

• Networking-vpp is included in os-nosdn-fdio-[noha|ha] scenario 

• Initial engagement (2016):
• Work to integrate with Apex installer started from Colorado 1.0

• Was in Colorado 3.0 that we managed to pass release criteria tests and the 
os-nosdn-fdio-noha scenario made it into OPNFV

fd.io Foundation 27

https://wiki.opnfv.org/display/fds


OPNFV FDS/ os-nosdn-fdio-[noha|ha] overall 
architecture (Apex/Fuel)
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Timeline
• Apex/RH

• Colorado – 12/2016
• passed release criteria tests
• only non-HA scenario (os-nosdn-fdio-

noha)

• Danube – 04/2017
• HA scenario (os-nosdn-fdio-ha)

• Euphrates – 10/2017
• Bugfix release

• Fraser – 05/2018
• L3 integration

• Gambia – N/A -> Last available 
release
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• Fuel
• Hunter – 05/2019

• L3 integration

• non-HA scenario

• Iruya – 01/2020
• Python3

• Jerma – sometimes in 2020



Thank You - OPNFV, Functest, Fuel (and Apex)

• Truly symbiotic relationship

• OPNFV gives us
• A production like environment for testing in addition to devstack based 

testing
• Access to early upstream releases / an early warning system
• Ability to catch lots of issues during OPNFV release testing

• Manual as well as Functest
• Eg., Nova live migration, Trunk Port, L3, NAT and so on

• We contributed by finding & reporting issues across different projects 
– Apex, Fuel, Functest, snaps, domino, orchestra, cloudify_ims
• Eg., SNAPS-185, FUNCTEST-970, APEX-468 etc
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An example – Fraser release

• networking-vpp = 15 bugs found
• VPP = 4 bugs found
• Apex = 11 bugs found
• Misc = 7 bugs found

NOTE: Functest helped catch close to 40% of bugs in 
VPP/networking-vpp
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Latest status – Iruya (Jan 2020)

• Installer = Fuel only

• VPP/networking-vpp version = 20.01

• OpenStack version =  Stein

• Ubuntu Bionic

• Completely Python3 (Python 3.6)
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Networking-vpp: Roadmap / next steps

Next version will be networking-vpp 20.05
• https://launchpad.net/networking-vpp

• Bulk API calls
• Speed up reconfiguration after restart
• Support for bulk programming of ACLs using VPP async APIs

• Network APIs for new network types
• Provide interface to easily add new overlay types

• TaaS/ERSPAN
• Push changes upstream: ERSPAN APIs for OpenStack

• Testing, testing, testing
• Support HA scenario for Fuel
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Questions
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