
CNCF TUG Progess
Lei WANG

© 2020 Cloud Native Computing Foundation2

TUG white paper:
• Prologue: Cloud Native Thinking for Telecommunications, final version is in progress

White Papers

Cloud Native Thinking for Telecommunications
Basic tenets and end users' suggestions on how cloud native design and principles can be applied to mission critical
telecommunications functions.
Table of Contents
•1.1 Introduction
•1.2 What is Cloud Native?
•1.3 Defining Cloud Native Systems

• 1.3.1 What "loosely coupled" means in cloud native systems
• 1.3.2 Cloud native applications require orchestration
• 1.3.3 Infrastructure, Deployment and Configuration of Cloud Native Systems

•1.4 Cloud Native Network Functions
•1.5 Cloud Native for Telcos

• 1.5.1 A Brief History of Virtualisation for Telcos
• 1.5.2 Software Defined Networking And The Emergence of VNFs
• 1.5.3 Principles for Cloud Native Telco Infrastructure and Applications
• 1.5.4 Evolving the Stack From VNFs to CNFs

•1.6 Cloud Native for Telcos in Practice
•1.7 Conclusion

© 2020 Cloud Native Computing Foundation3

White Papers – cont.

• WIP: Deploying Cloud Native Network Functions in a telecom
service provider ecosystem (google docs)

© 2020 Cloud Native Computing Foundation4

White Papers – cont.
• Cloud Native Principles gitbook (github markdown)
• New paper regarding CNF Conformance

© 2020 Cloud Native Computing Foundation5

CNF conformance

• The goal is to provide an open source test suite to demonstrate conformance and implementation of
best practices for both open and closed source Cloud native Network Functions.

• The test suite will be categorized by following aspects:
• Compatibility - CNFs should work with any Certified Kubernetes product and any CNI-compatible network

that meet their functionality requirements.
• Statelessness - The CNF's state should be stored in a custom resource definition or a separate database

(e.g. etcd) rather than requiring local storage. The CNF should also be resilient to node failure.
• Security - CNF containers should be isolated from one another and the host.
• Scalability - CNFs should support horizontal scaling (across multiple machines) and vertical scaling

(between sizes of machines).
• Configuration and Lifecycle - The CNF's configuration and lifecycle should be managed in a declarative

manner, using ConfigMaps, Operators, or other declarative interfaces.
• Observability - CNFs should externalize their internal states in a way that supports metrics, tracing, and

logging.
• Installable and Upgradeable - CNFs should use standard, in-band deployment tools such as Helm

(version 3) charts.
• Hardware Resources and Scheduling - The CNF container should access all hardware and schedule to

specific worker nodes by using a device plugin.

• https://github.com/cncf/cnf-conformance/blob/master/TEST-CATEGORIES.md

© 2020 Cloud Native Computing Foundation6

Platform conformance test

• Review and assess CNTT RA-2 platform requirements
• provide feedback on how CNF Conformance can support RA-2 requirements for

Platform Conformance Tests
• Assessment of K8s test coverage for CNTT RA2 requirements

• Map CNTT RA-2 requirements to Conformance and e2e tests
• Create PoC scoring system for Platform Conformance (RA2) tests

• to create an initial scoring system/points for the RA-2-based Platform Conformance
tests

• Current work taking place at https://github.com/cncf/cnf-conformance

© 2020 Cloud Native Computing Foundation7

Open Questions

• CNI issue - enhance the CNI profiles to adopt more
performance requirements

• Conformance profiles – less is better
• Privileged pods – least privilege and advanced

networking
• MANO Integration – ONAP can be used
• CNF Modeling

© 2020 Cloud Native Computing Foundation8

Current Approaches for CNF Modeling
CNF Modeling Approach Reference

implementation
Onboarding VNFC Model Design Output Runtime

1 Heat + Helm + TOSCA ONAP K8s Cloud
Regions

(Reference : link)

Dummy VNF Heat
template

Helm Chart for Pod-
based VNF
Component

Heat/TOSCA for VM
based VNFC

TOSCA CSAR with
Heat & Helm chart

as artifacts

Helm chart consumed by
K8s plugin for Pod-based
VNFC, Rest consumed by

Orchestrator

2 Extended TOSCA Types Cloudify
(Reference: link, link)

TOSCA TOSCA TOSCA blueprint TOSCA blueprint
processed by K8s plugin

or Infra plugin

3 TOSCA Kubernetes profile Puccini
(Reference : link)

NA (Not an
orchestrator) , input

can be TOSCA

TOSCA Clout – Can
generate specific

CNF or VNF specs

Clout to respective Infra-
specific template

4 TOSCA + Helm chart as
artifact

NA,
See Note 1, Note 2

Dummy VNFD
TOSCA template

Helm chart for Pod-
based VNF

Component, TOSCA
for VM based VNFC

TOSCA CSAR with
Helm chart as

artifact

TOSCA template
consumed by

Orchestrator and Helm
chart consumed by the

VNFM/CISM/PaaS

5 Extended TOSCA types+ K8s
Custom Resources/Operators

ONAP K8s Network
CRDs (Reference :

link)

TOSCA TOSCA TOSCA Plugins that leverage
TOSCA model to invoke

Custom Resources
implemented in K8s +
Controllers for Custom
Resource processing

• Note 1: IFA011 Support for Pods Contribution (link) , VDU extension to OsContainerDesc. Helm Chart is being refrred as one of the potential deployment method in ETSI IFA029
• Note 2: May be a recommended approach in ONAP

© 2020 Cloud Native Computing Foundation9

Current Approaches: Pros and Cons
Approach Pros Cons

1 Heat + Helm + TOSCA • Accommodate VNF/CNF modeling requirements
• No cross dependency , can independently describe

the NF in respective modeling format of choice

• Customized approach for ONAP
• Complexity of managing multiple formats of

descriptors requires additional skills
• Currently based on Helm 2
• Complexity to pass CNF instantiation inputs

2 Extended TOSCA Types • Logical extension to the existing VNF modeling
approach

• Supports multiple mechanisms for attaching the
CNF-specific K8s resource artifacts

• Require additional plugins to interpret and
orchestrate for specific infrastructure.

• No consensus with SDOs yet

3 TOSCA Kubernetes Profile • Supports K8s and Openstack infra profiles
• Can work with any orchestrator with available

toolsets and programmable interface

• Design time integration challenges
• Redundant parsers (existing + Puccini)
• Managing intermediate format and associated

catalog operations

4 TOSCA + Helm chart as artifact • Logical extension to the current TOSCA-based VNF
modeling with Helm as additional artifact

• Switching back and forth between TOSCA and Helm,
across Helm charts might be overhead for existing
Orchestration Solution

• Helm templating and dynamic value management,
repo management overheads

• Additional tooling to be integrated in Orchestrator

5 Extended TOSCA types+ K8s
Custom Resources/Operators

• Minimum changes for the existing TOSCA-based
orchestration

• Balanced approach to solve challenges of each

• Additional consensus and customizations
• Possibility of specializations if not standardized.

which may lead to maintenance overhead

Thank you

