CNCF TUG Progess

Lei WANG

CLOUD NATIVE

COMPUTING FOUNDATION



2

White Papers

TUG white paper:

» Prologue: Cloud Native Thinking for Telecommunications, final version is in progress

Cloud Native Thinking for Telecommunications
Basic tenets and end users' suggestions on how cloud native design and principles can be applied to mission critical
telecommunications functions.
Table of Contents
*1.1 Introduction
*1.2 Whatis Cloud Native?
1.3 Defining Cloud Native Systems
* 1.3.1 What "loosely coupled" means in cloud native systems
« 1.3.2 Cloud native applications require orchestration
« 1.3.3 Infrastructure, Deployment and Configuration of Cloud Native Systems
*1.4 Cloud Native Network Functions
1.5 Cloud Native for Telcos
* 1.5.1 A Brief History of Virtualisation for Telcos
« 1.5.2 Software Defined Networking And The Emergence of VNFs
* 1.5.3 Principles for Cloud Native Telco Infrastructure and Applications
* 1.5.4 Evolving the Stack From VNFs to CNFs
1.6 Cloud Native for Telcos in Practice
1.7 Conclusion

© 2020 Cloud Native Computing Foundation



White Papers - cont.

* WIP: Deploying Cloud Native Network Functions in a telecom
service provider ecosystem (google docs)

CNCF TUG White Paper LULIIIY CUTIISTILS W1 MV IG LG LGRS 3,

UPDATE 2019-06-19
CHAPTER OVERVIEW

Please do not modify this chapter directly (except for adding your name). Comment or add

UPDATE 2019-06-07 =
lsuggestions instead.|
LIST OF CONTRIBUTORS

Toc: Introduction [lan Wells]

UPDATE 2019-06-14

INTRO e Background & brief look back at telecom clouds {incl. typical implementations)
e Motivation [Jeffrey Saelens]

CHAPTER OVERVIEW e Scope

Introduction [lan Wells] e Definition of a CNF [Tamas Zsiros - done]

e Target audience [Tamas Zsiros- done]

Characteristics of a telecom de...
e License [Tamas Zsiros - done]

Concept of a vanilla K8s-based ...

The ideal CNF Characteristics of a telecom deployment

Best Practices * Aim statement [lan Wells]
= 5 e Scenarios: “on-premises” and “as a service”
Contributions i :

e Hybrid cloud and cloud-bursting

Definition of CNF [Tamas Zsiros.. ¢ Homogenous and heterogenous workloads

Iamias Zeirne e Similarities and differences compared to other cloud native applications (e.g. enterprise &
. web) [Gergely Csatari]

e Support for the ARM architecture[Lei Wang]
e Multi-vendor aspect

Vertical integration (cloud infra / CNF)



White Papers - cont.

» Cloud Native Principles gitbook (github markdown
* New paper regarding CNF Conformance

"™, cloud-native-principles

Cloud Native Networking Preamble

Cloud Native Principles
Cloud Native Microservice Principles

Cloud Native Immutable

ifrastructure Prnciples What is a Cloud Native Network Function (CNF)?

CSlosdiNasve Dedlaranre a=y In order to talk about CNFs, we need to define [1]. Cloud native systems are, among other

BB pres lhings, a set of loosely coupled services. The s, are deployed onio
immutable infrastructure while being managed by an orchestrator. This paper includes four links to other
papers that go into detail about the definitions of cloud native, microservices, immutable infrastructure,

SO known as microservic

se services, a

and CNFs from an OSI layer perspective.
How are systems loosely coupled?

Cloud native sys slear separalion belween lheir processes [2]. They ulilize the Unix
philosophy of doing one thing and doing it well. These microservices usually use a technology like
containers and aim for one process per container [3]. As such, cloud native applications should have all of
their dependencies packaged with them during the build phase and leveraged during deployment [4].

stems have a

T cloud-native-principles

Cloud Native Networking Preamble
Cloud Native Principles

Cloud MNative Microser ciples
Cloud Native immutable

Infrastructure Principles What is a Cloud Native Network Function (CNF)?

Cloud Native Declarative OSI In order to talk about CNFs, we need to define 1. Cloud native systems are, among other

P

ciples N N N N .
P things, a sct of looscly coupled services. These services, also known as microservices, are deployed onto

immutable infrastructure while being managed by an orchestrator. This paper includes four links to other

papers that go into detail about the definitions of cloud native, microservices, immutable infrastructure,

and CNFs from an OSI layer perspective.

How are systems loosely coupled?

hey utilize the Unix
- a lechnology like

Cloud native systems have a clear separation between their processes [2].
e microservices usually u

philosophy of doing one thing and doing il well. Thes
containers and aim for one process per container [3]. As such, cloud native applications should have all of
their dependencies packaged with them during the build phase and leveraged during deployment [4].




CNF conformance

» The goal is to provide an open source test suite to demonstrate conformance and implementation of
best practices for both open and closed source Cloud native Network Functions.
« The test suite will be categorized by following aspects:

Compatibility - CNFs should work with any Certified Kubernetes product and any CNI-compatible network
that meet their functionality requirements.

Statelessness - The CNF's state should be stored in a custom resource definition or a separate database
(e.g. etcd) rather than requiring local storage. The CNF should also be resilient to node failure.

Security - CNF containers should be isolated from one another and the host.

Scalability - CNFs should support horizontal scaling (across multiple machines) and vertical scaling
(between sizes of machines).

Configuration and Lifecycle - The CNF's configuration and lifecycle should be managed in a declarative
manner, using ConfigMaps, Operators, or other declarative interfaces.

Observability - CNFs should externalize their internal states in a way that supports metrics, tracing, and
logging.

Installable and Upgradeable - CNFs should use standard, in-band deployment tools such as Helm
(version 3) charts.

Hardware Resources and Scheduling - The CNF container should access all hardware and schedule to
specific worker nodes by using a device plugin.

» https://github.com/cncf/cnf-conformance/blob/master/ TEST-CATEGORIES.md




Platform conformance test

Review and assess CNTT RA-2 platform requirements
» provide feedback on how CNF Conformance can support RA-2 requirements for
Platform Conformance Tests
Assessment of K8s test coverage for CNTT RA2 requirements
« Map CNTT RA-2 requirements to Conformance and e2e tests
Create PoC scoring system for Platform Conformance (RA2) tests
« to create an initial scoring system/points for the RA-2-based Platform Conformance
tests
Current work taking place at hitps://github.com/cncf/cnf-conformance




Open Questions

 CNIlissue - enhance the CNI profiles to adopt more
performance requirements

« Conformance profiles — less is better

* Privileged pods — least privilege and advanced
networking

« MANO Integration — ONAP can be used

 CNF Modeling



Current Approaches for CNF Modeling

CNF Modeling Approach Reference Onboarding VNFC Model Design Output
implementation

Heat + Helm + TOSCA

Extended TOSCA Types

TOSCA Kubernetes profile

TOSCA + Helm chart as
artifact

Extended TOSCA types+ K8s
Custom Resources/Operators

ONAP K8s Cloud
Regions
(Reference : link)

Cloudify
(Reference: link, link)

Puccini
(Reference : link)

NA,
See Note 1, Note 2

ONAP K8s Network
CRDs (Reference :
link)

Dummy VNF Heat Helm Chart for Pod-

template based VNF
Component
Heat/TOSCA for VM
based VNFC
TOSCA TOSCA
NA (Not an TOSCA

orchestrator) , input
can be TOSCA

Dummy VNFD Helm chart for Pod-
TOSCA template based VNF
Component, TOSCA
for VM based VNFC
TOSCA TOSCA

TOSCA CSAR with
Heat & Helm chart
as artifacts

TOSCA blueprint

Clout — Can
generate specific
CNF or VNF specs

TOSCA CSAR with
Helm chart as
artifact

TOSCA

Helm chart consumed by

K8s plugin for Pod-based

VNFC, Rest consumed by
Orchestrator

TOSCA blueprint
processed by K8s plugin
or Infra plugin

Clout to respective Infra-
specific template

TOSCA template
consumed by
Orchestrator and Helm
chart consumed by the
VNFM/CISM/PaaS

Plugins that leverage
TOSCA model to invoke
Custom Resources
implemented in K8s +
Controllers for Custom
Resource processing

Note 1: IFA011 Support for Pods Contribution (link) , VDU extension to OsContainerDesc. Helm Chart is being refrred as one of the potential deployment method in ETSI IFA029
Note 2: May be a recommended approach in ONAP



Current Approaches: Pros and Cons
““

Heat + Helm + TOSCA * Accommodate VNF/CNF modeling requirements Customized approach for ONAP

No cross dependency , can independently describe
the NF in respective modeling format of choice

CompIeX|ty of managing multiple formats of
descriptors requires additional skills
Currently based on Helm 2

Complexity to pass CNF instantiation inputs

2 Extended TOSCA Types * Logical extension to the existing VNF modeling Require additional plugins to interpret and
approach orchestrate for specific infrastructure.
» Supports multiple mechanisms for attaching the No consensus with SDOs yet
CNEF-specific K8s resource artifacts
3 TOSCA Kubernetes Profile » Supports K8s and Openstack infra profiles Design time integration challenges
» Can work with any orchestrator with available Redundant parsers (existing + Puccini)
toolsets and programmable interface Managing intermediate format and associated
catalog operations
4 TOSCA + Helm chart as artifact » Logical extension to the current TOSCA-based VNF Switching back and forth between TOSCA and Helm,
modeling with Helm as additional artifact across Helm charts might be overhead for existing
Orchestration Solution
Helm templating and dynamic value management,
repo management overheads
Additional tooling to be integrated in Orchestrator
5 Extended TOSCA types+ K8s * Minimum changes for the existing TOSCA-based Additional consensus and customizations

Custom Resources/Operators

orchestration
Balanced approach to solve challenges of each

Possibility of specializations if not standardized.
which may lead to maintenance overhead



Thank you

CLOUD NATIVE

COMPUTING FOUNDATION



