
© 2018 Nokia1 © 2018 Nokia1

Kubernetes networking
in the telco space
LFN Developer Forum

Gergely Csatari (using the materials of Robert Springer, and Peter Megyesi with the help of Levente Kale, Laszo Janosi and Gergo Huszty)

26-03-2018

© 2018 Nokia2

Whoami:
Gergely Csatari
Nokia
gergely.csatari@nokia.com
csatari on freenode
@GergelyCsatari on Twitter

mailto:gergely.csatari@nokia.com

© 2018 Nokia3

Basic overview of Kubernetes networking

Most prominent CNI plugins

Features important for Telcos

Solutions

© 2018 Nokia4

Kubernetes networking basics

Host

Pod 1 net ns

eth0

root net ns

Pod 2 net ns

eth0

vethnn vethyy

eth0

cbr0

Host

Pod 1 net ns

eth0

root net ns

Pod 2 net ns

eth0

vethnn vethyy

eth0

cbr0

© 2018 Nokia5

Kubernetes networking basics

Kubernetes

Pod network ns

CNI plugin

Create

Add

Add veth

Do magic

IPAM plugin

Get IP

IP

Added

© 2018 Nokia6

Kubernetes networking basics

Kubernetes Pod network ns CNI plugin

Delete

Remove veth

Undo magic

IPAM plugin

Free IP

OK

Deleted

© 2018 Nokia7

Most relevant reference CNI plugins

Creates a bridge, adds the host and the container to it.

Creates a new IP address on the host interface, forwards all traffic of that to the
container.

Creates a new MAC address, forwards all traffic of that to the container.

Runs a daemon on the host to make DHCP requests on behalf of the container.

bridge

ipvlan

macvlan

dhcp

© 2018 Nokia8

Most relevant CNI plugins for production

Uses VXLAN tunnels between the hosts using a kernel implementation. Flannel uses
etcd to store metadata.

Provides integration to Calico what defines BGP agents and advertises the pod subnets
to the fabric.

Provides integration to Nuage, the highly scalable policy-based Software-Defined Networking
(SDN) platform. Nuage uses the open source Open vSwitch for the data plane along with a
feature rich SDN Controller built on open standards.

An overlay based generic networking solution for containers.

A CNI plugin to cascade other CNI plugins.

© 2018 Nokia9

Support for multiple interfaces
Things what our telco workload misses from these

What? Some pods should have two or

more interfaces.

Why? Support for load balancers for

telco protocols, SCTP MH, separation of
different traffic types.

Host

Pod 1

eth0

network magic eth0 eth1

ethn

Pod 2

ethx

© 2018 Nokia10

Fixed IP address
Things what our telco workload misses from these

What? It should be possible to

manually set the IP address of some pods.

Why? These are well known IP

addresses distributed in configuration..

Host

Pod 1

eth0

network magic eth0 eth1

ethn

Pod 2

ethx

IP statically

configured

Automatic

IPs from a pool

© 2018 Nokia11

Host

Overlay and NAT less
Things what our telco workload misses from these

What? There should be no overlay

used to implement the host-to-host
communication and there should be no NAT
used in the hosts.

Why? Both NAT-ting and overlay

networks introduce extra latency into
packet handling. For radio handling
applications a ms delay can be serious.
There are protocols which can not be used
together with NAT.

Host

Pod 1

eth0

nm

Pod 2

ethn

nm

© 2018 Nokia12

SR-IOV support
Things what our telco workload misses from these

What? The CNI plugin should be able

to utilize SR-IOV capabilities of the host if
there are any. This should be possible
without NIC vendor lock in.

Why? SR-IOV makes packet processing

faster and in telco we need fast packet
processing.

Host

Pod 1

eth0

nm

SR-IOV

© 2018 Nokia13

DPDK
Things what our telco workload misses from these

What? The CNI plugin should be able

to utilize the DPDK capabilities of the host if
there are any.

Why? DPDK makes packet processing

faster and in telco we need fast packet
processing.

Host

Pod 1

eth0

nm

© 2018 Nokia14

Cloud compliancy
Things what our telco workload misses from these

What? The CNI networking solution

should not state any special networking
requirements to the underlying cloud
infrastructure in case of Kubernetes is
running on top of VM-s of a cloud infra.

Why? Our solutions are deployed to

both VM based clouds and to bare metal
and we would like to support both of them
using the same software stack. Host

Pod 1

eth0

nm

No specific IP or MAC
address should be
visible here

© 2018 Nokia15

Firewall or network policy support
Things what our telco workload misses from these

What? The CNI plugin should support

explicit firewall rules, static and policy based
routing to control the traffic between the
different pods.

Why? There should be a way to control

the traffic between the pods.

Host

Pod 1

eth0

network magic eth0 eth1

ethn

Pod 2

ethn

© 2018 Nokia16

Solutions

Multiple interfaces There are several discussions in kubernetes-sig-network and there

are concrete plans for 2018. Intels Multus provides a solution to cascade different CNI plugins.

SR-IOV and DPDK There is an CNI plugin for DPDK with SR-IOV support. There is a

vhostuser CNI plungin which can support DPDK accelerated OvS or VPP.

Network policies Calico can be run in policy enforcement mode what is also called Canal.

https://groups.google.com/forum/#!forum/kubernetes-sig-network
https://docs.google.com/viewer?a=v&pid=forums&srcid=MDQ4MTcwNzg0MDY2MzA2OTEwNTEBMDY3NzQzOTIxNTAzMTUyNDU1MDQBYWI0aFNmLW1BZ0FKATAuMQEBdjI&authuser=0
https://github.com/Intel-Corp/sriov-cni
https://github.com/intel/vhost-user-net-plugin
https://github.com/projectcalico/canal

© 2018 Nokia17

Nokia danm
Solutions

Originally it was built as part of the container infrastructure of one Nokia VNF.

Uses ipvlan for network segregation. There is no overlay or NAT.

Supports both VLAN and VxLAN interfaces.

Can cascade other CNI plugins, this is used for SR-IOV.

Has its own ipam plugin which supports fixed IP-s and IP routes.

Works based on the annotations in the pod manifest.

© 2018 Nokia18

Nokia danm example
Solutions

Host

Pod 1

IP
a

a

eth1 eth2

VLAN 2

eth3

b
c d

Team 0

vxlan

VLAN 3 VLAN 4

e
g i

f
h

IP
c

IP
g

Pod 2

IP
b

IP
d

IP
h

Pod 3

IP
e

IP
f

IP
i

IP a&b – These IPs are
created without VLAN and
mapped to Pods 1&2.
IP c&d – These IPs are
created with VLAN ID. The
VLAN tagging happens on
the Host side.
IP e&f – These IPs are
created with different VLAN
IDs and placed on different
NICs. This mode is useful for
SCTP traffic.
IP g&h&i – These IPs are
created with VXLAN (not
simple VLAN) and placed
above a team interface which
provides redundancy. This
mode is useful for container
internal traffic.

© 2018 Nokia19

Q&A

© 2018 Nokia21

References

<Document ID: change ID in footer or remove>

1. https://kubernetes.io/docs/concepts/cluster-administration/networking/

2. https://medium.com/@ApsOps/an-illustrated-guide-to-kubernetes-networking-part-1-d1ede3322727

3. https://medium.com/@ApsOps/an-illustrated-guide-to-kubernetes-networking-part-2-13fdc6c4e24c

4. https://github.com/containernetworking/plugins

https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://medium.com/@ApsOps/an-illustrated-guide-to-kubernetes-networking-part-1-d1ede3322727
https://medium.com/@ApsOps/an-illustrated-guide-to-kubernetes-networking-part-2-13fdc6c4e24c
https://github.com/containernetworking/plugins

