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Kubernetes networking basics
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Kubernetes networking basics
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Kubernetes networking basics
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Most relevant reference CNI plugins

Creates a bridge, adds the host and the container to it.

Creates a new IP address on the host interface, forwards all traffic of that to the 
container.

Creates a new MAC address, forwards all traffic of that to the container.

Runs a daemon on the host to make DHCP requests on behalf of the container.
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Most relevant CNI plugins for production

Uses VXLAN tunnels between the hosts using a kernel implementation. Flannel uses 
etcd to store metadata.  

Provides integration to Calico what defines BGP agents and advertises the pod subnets 
to the fabric.

Provides integration to Nuage, the highly scalable policy-based Software-Defined Networking 
(SDN) platform. Nuage uses the open source Open vSwitch for the data plane along with a 
feature rich SDN Controller built on open standards.

An overlay based generic networking solution for containers. 

A CNI plugin to cascade other CNI plugins. 
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Support for multiple interfaces
Things what our telco workload misses from these

What? Some pods should have two or 

more interfaces. 

Why? Support for load balancers for 

telco protocols, SCTP MH, separation of 
different traffic types. 
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Fixed IP address
Things what our telco workload misses from these

What? It should be possible to 

manually set the IP address of some pods. 

Why? These are well known IP 

addresses distributed in configuration.. 
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Host

Overlay and NAT less 
Things what our telco workload misses from these

What? There should be no overlay 

used to implement the host-to-host 
communication and there should be no NAT 
used in the hosts. 

Why? Both NAT-ting and overlay 

networks introduce extra latency into 
packet handling. For radio handling 
applications a ms delay can be serious. 
There are protocols which can not be used 
together with NAT.
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SR-IOV support 
Things what our telco workload misses from these

What? The CNI plugin should be able 

to utilize SR-IOV capabilities of the host if 
there are any. This should be possible 
without NIC vendor lock in. 

Why? SR-IOV makes packet processing 

faster and in telco we need fast packet 
processing.
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DPDK
Things what our telco workload misses from these

What? The CNI plugin should be able 

to utilize the DPDK capabilities of the host if 
there are any. 

Why? DPDK makes packet processing 

faster and in telco we need fast packet 
processing.
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Cloud compliancy
Things what our telco workload misses from these

What? The CNI networking solution 

should not state any special networking 
requirements to the underlying cloud 
infrastructure in case of Kubernetes is 
running on top of VM-s of a cloud infra. 

Why? Our solutions are deployed to 

both VM based clouds and to bare metal 
and we would like to support both of them 
using the same software stack. Host

Pod 1

eth0

nm

No specific IP or MAC 
address should be 
visible here
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Firewall or network policy support
Things what our telco workload misses from these

What? The CNI plugin should support 

explicit firewall rules, static and policy based 
routing to control the traffic between the 
different pods. 

Why? There should be a way to control 

the traffic between the pods.
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Solutions

Multiple interfaces There are several discussions in kubernetes-sig-network and there 

are concrete plans for 2018. Intels Multus provides a solution to cascade different CNI plugins.

SR-IOV and DPDK There is an CNI plugin for DPDK with SR-IOV support. There is a 

vhostuser CNI plungin which can support DPDK accelerated OvS or VPP.

Network policies Calico can be run in policy enforcement mode what is also called Canal.

https://groups.google.com/forum/#!forum/kubernetes-sig-network
https://docs.google.com/viewer?a=v&pid=forums&srcid=MDQ4MTcwNzg0MDY2MzA2OTEwNTEBMDY3NzQzOTIxNTAzMTUyNDU1MDQBYWI0aFNmLW1BZ0FKATAuMQEBdjI&authuser=0
https://github.com/Intel-Corp/sriov-cni
https://github.com/intel/vhost-user-net-plugin
https://github.com/projectcalico/canal
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Nokia danm
Solutions

Originally it was built as part of the container infrastructure of one Nokia VNF. 

Uses ipvlan for network segregation. There is no overlay or NAT.

Supports both VLAN and VxLAN interfaces.  

Can cascade other CNI plugins, this is used for SR-IOV.

Has its own ipam plugin which supports fixed IP-s and IP routes.

Works based on the annotations in the pod manifest.
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Nokia danm example
Solutions
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IP a&b – These IPs are
created without VLAN and
mapped to Pods 1&2.
IP c&d – These IPs are
created with VLAN ID. The
VLAN tagging happens on
the Host side.
IP e&f – These IPs are
created with different VLAN
IDs and placed on different
NICs. This mode is useful for
SCTP traffic.
IP g&h&i – These IPs are
created with VXLAN (not
simple VLAN) and placed
above a team interface which
provides redundancy. This
mode is useful for container
internal traffic.
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