

ONAP OOF – Casablanca+ Discussion at ONS 03/26/2018, Los Angeles, CA

Ramki Krishnan (VMware) on behalf of OOF Team

Agenda

- Group discussion on Use Case Requirements 5G, Edge Computing, VOLTE 20 min.
- Architectural Direction for Casablanca and beyond

- 10 min.

- Evolve to fully Model-driven
- Interaction with key components A&AI, Multi Cloud, Policy etc.
- @Scale implementation for large distributed clouds

ONAP Optimization Service Design Framework – Beijing Release

- Optimization Service Design Framework (OSDF)
 - Framework for easily creating model- and policy-driven optimization applications
 - Declarative modeling of models, data templates, and configuration (based on MiniZinc)
 - Lifecycle management (including execution environment) for optimization applications
 - Adaptors to ONAP components (Policy, A&AI, Multi Cloud, etc.); can onboard custom data adapters
 - Support for external optimizers (e.g. supporting HAS) via declarative configuration
 - Building blocks, tutorials, and sand-box containers with demo applications
- HAS use case with vCPE
 - HPA policy integration
 - Integration with Multi Cloud metrics
- Change Management Scheduling Optimization (CMSO)
 - Model driven optimization with Minizinc
 - Demonstration with simulated policies and data
 - Aligned to support the CMSO use case

Drive Service Agility through Declarative Modelling

ONAP Optimization Service Design Framework – Beijing Release (Contd.)

- Stretch goals for R2 (model driven example applications)
 - Model driven implementation of vDNS and vFW use cases
 - Model driven implementation of 5G Load-Aware Placement/Scheduling
 - Notebooks for interactive visualization/analysis and experimenting
 - Visualization and analysis of cloud region utilization
 - Visualization of schedules provided by the CMSO app
- A cloud native containerized app with framework and demo applications
 - Interactive web interface for creating/modifying applications (MiniZinc and various solvers)
 - Visualization interfaces
 - Notebook infrastructure (JupyterLab)

OOF Architectural Direction - Casablanca & Beyond

Design - Model-Driven Transition

Beijing/ Casablanca

 Map Policy Model (TOSCA) to Optimization (Minizinc) Model

Casablanca

 Translate Policy Model to Optimization Model

Casablanca+

Embed
 Optimization
 Model in
 TOSCA Model

- Multiple solution choices; Important due to the time lag in @scale infra/application metric collection
- Joint Constraints across cloud regions @ease;
 Important for 5G/Edge Computing Apps
- Masking Mathematical complexity of Optimization algorithms through Modelling

Deployment/Operation - @scale Edge Cloud Support

- Infra/Application Aggregate Metrics @scale through DMaaP
- Near-real-time solutions for Edge Clouds

Model-Driven Optimization Framework based on Minizinc

