ONAP OOF – Casablanca+ Discussion at ONS
03/26/2018, Los Angeles, CA

Ramki Krishnan (VMware) on behalf of OOF Team
Agenda

• Group discussion on Use Case Requirements - 5G, Edge Computing, VOLTE - 20 min.

• Architectural Direction for Casablanca and beyond - 10 min.
 - Evolve to fully Model-driven
 - Interaction with key components A&AI, Multi Cloud, Policy etc.
 - @Scale implementation for large distributed clouds
ONAP Optimization Service Design Framework – Beijing Release

- Optimization Service Design Framework (OSDF)
 - Framework for easily creating model- and policy-driven optimization applications
 - Declarative modeling of models, data templates, and configuration (based on MiniZinc)
 - Lifecycle management (including execution environment) for optimization applications
 - Adaptors to ONAP components (Policy, A&AI, Multi Cloud, etc.); can onboard custom data adapters
 - Support for external optimizers (e.g. supporting HAS) via declarative configuration
 - Building blocks, tutorials, and sand-box containers with demo applications

- HAS use case with vCPE
 - HPA policy integration
 - Integration with Multi Cloud metrics

- Change Management Scheduling Optimization (CMSO)
 - Model driven optimization with Minizinc
 - Demonstration with simulated policies and data
 - Aligned to support the CMSO use case
ONAP Optimization Service Design Framework – Beijing Release (Contd.)

• Stretch goals for R2 (model driven example applications)
 - Model driven implementation of vDNS and vFW use cases
 - Model driven implementation of 5G Load-Aware Placement/Scheduling
 - Notebooks for interactive visualization/analysis and experimenting
 - Visualization and analysis of cloud region utilization
 - Visualization of schedules provided by the CMSO app

• A cloud native containerized app with framework and demo applications
 - Interactive web interface for creating/modifying applications (MiniZinc and various solvers)
 - Visualization interfaces
 - Notebook infrastructure (JupyterLab)
OOF Architectural Direction – Casablanca & Beyond

Design - Model-Driven Transition

- **Beijing/Casablanca**
 - Map Policy Model (TOSCA) to Optimization (Minizinc) Model

- **Casablanca**
 - Translate Policy Model to Optimization Model

- **Casablanca+**
 - Embed Optimization Model in TOSCA Model

Deployment/Operation - @scale Edge Cloud Support

- **Multiple solution choices;** Important due to the time lag in @scale infra/application metric collection
- **Joint Constraints** across cloud regions @ease; Important for 5G/Edge Computing Apps
- **Masking Mathematical complexity** of Optimization algorithms through Modelling

- **Infra/Application Aggregate Metrics @scale through DMaaS**
- **Near-real-time solutions for Edge Clouds**

Upstream OpenStack, VMware VIO, Wind River Titanium Cloud, Microsoft Azure etc.
Model-Driven Optimization Framework based on Minizinc

ONAP-OF Contributions
- Data Interfaces
- Model/Constraint Translators
- Building Blocks
- Recipes and KnowledgeBase
- Operational Environment

Available Extensions
- Contributed Models
- Global Constraint Catalog
- Stochastic Minizinc
 - Uncertainty Considerations
- MiningZinc
 - Constraint-Based Mining
- MiniBrass
 - Soft Constraints

Current Optimization Technology
- LibMzn
 - Embeddable Library

Minizinc Standard Library
- MiniZinc Model

Flat Zinc
- Data (dzn format)

Integration Tools
- Gecode
- Google OR Tools
- ECLIPSe
- CHOCO
- Chuffed
- PI CPLEX
- CPLEX
- CoinOR
- Gurobi