
ONAP Security
- AAF Security Strategy
- Proposed Security Deliverables for Casablanca

ONS Breakout Session

March 26, 2018, 4pm, PDT

Jonathan Gathman, AT&T, Architect of AAF

Amy Zwarico, AT&T

Stephen Terrill, Ericsson

AAF Security Strategy

ONS Breakout Session

March 26, 2018, 4pm, PDT

Jonathan Gathman, AT&T, Architect of AAF

Amy Zwarico, AT&T

What will you get out of this talk?

•What is AAF?

•How do I use AAF to secure my App?

•When/how can I start?

What is AAF?

What is AAF?

• AAF stands for “Application Auth Framework”
- Originally “Auth” was “Authorization”, but now supports implementations for

• Authentication
• Authorization

• AAF consists of
- CADI Framework - a library used by services to:

• Authenticate with one or more Authentication Protocols (more on that in a bit)
• Authorize in a FINE-GRAINED manner using AAF Components

- AAF Components – RESTful Services:
• Service (primary) – All the Authorization information (more on that in a bit)
• Locate – how to find ANY OR ALL AAF instances across any geographic distribution
• OAuth 2.0 – new component providing Tokens and Introspection (no time to discuss here)
• GUI – Tool to view and manage Authorization Information, and create Credentials
• Certman – Certificate Manger, create and renew X509 with Fine-Grained Identity
• FS – File Server to provide access to distributable elements (like well known certs)
• Hello - Test your client access (certs, OAuth 2.0, etc)

- Cassandra as global replicating Data Store

Brief (very Brief) History of AAF

AAF was started as the Client CADI Framework

Goal: Allow Developers to CORRECTLY use required Security:
1. Without Special Coding
2. More than one Protocol supported SIMULTANEOUSLY

1. Example: Basic Auth, SSO Cookies, 2 - way TLS
2. This also allows NEW Protocol Plugins as needed

1. New Security packages (i.e. OAuth 2.0)
2. Organization Specific Protocols (i.e. custom built SSO)

Authorization for Fine-Grained (AAF) modeled from an AT&T Deployment Tool

Certificate Manager was created to support Fine-Grained x509 Authentication (2016)

OAuth 2.0 supported added (2017)

Full AAF Suite brought to ONAP , “Beijing” (March 2018)

Example of AAF Elements in Action

What is AAF? – Review

AAF is a set of Client Libraries (CADI Framework) and RESTful

Services that support multiple Authentication Protocols and Fine-

Grained Authorization

Why should I use AAF to secure my App?

The Big ”Why”s

• Security layer’s done. You can focus on YOUR app

• Create common Authorization method across MicroService model
- The smaller the service element, the less it makes sense to create your own

Authorization scheme.

- AAF provides Organizational meaning to individual components

• Create common Suites of Tools out of MicroServices
- AAF separates Role from Permission

- A Role, then becomes a Suite of Permissions from potentially large suite of other tools
• Example: If AAF was applied to ONAP, becoming a committer would give you

• Tie in LinuxFoundation Identity Service

• Committer rights in Garret for your App

• Cassandra rights for your App (sign in with your LinuxFoundation ID, or use Certificate)

• Jenkins rights for your App

• Appropriate Deployment rights to common DEVL

• Any MicroServices that are developed specifically for LinuxFoundation

How do I use AAF to secure my App?

Any Secure Call needs …

Ahead of time - Developers

• Self-Serve AAF Functions for Developers
- Applications get a “Namespace” in AAF

• Example “org.onap.dmaap”

- Create Credentials for their App
• x509 Client Certificate or

• User/Password (Basic Auth)

- Create a Server Certificate (so service can be HTTP/S TLS)
• Can use the x509 Client Certificate, assuming all clients trust its Certificate Authority

- Create “Permissions” representing what they want to protect

- Code to those Permissions

Real time Authorization Process

Relationship of AAF Permission to Policy

CADI’s goal is to evaluate every transaction for Authentication and
Authorization.

Speed is paramount

There is one “Policy” for Authorization:

“Has this Authenticated User been Granted this Permission?”

AAF Permissions are like…

Thus,

An x509 Certificate represents a previous action of Authenticating an
End Client by trusting a Certificate Authority.

An AAF Permission represents a previous action of Authorizing a
particular Identity to access a Resource.

What Permissions is Returne about a User to the Service?

• Service only gets RELEVANT Permissions, meaning those that it has
access to.

• The Service is NOT told what other Permissions a User might have
that are beyond its scope.

But how do I code?

Coding is done with CADI Libraries, and there are many was to use the
Libraries.

1. J2EE (Servlets) – use the provided “CADIFilter”
• Filter Authenticates, and if valid, passes on to Servlet Code

• Surround your code with “if (httpServletRequest.isUserInRole(String)) { … }”
• The meaning is overloaded. Think “doesThisUserHaveThisPermission(“<AAFPermission>”)”

2. Java Client Library
• CADI provides “AAFCon”, “AAFAuthn” and “AAFAuthz” classes for direct Java Access

• This is how we code Plugins

3. Pre-written Plugins – use Java Client above
• Cassandra

• Shiro (new for Beijing)

• Others as needed. This IS Open Source Community!

4. Direct AAF RESTful API
• This should only happen with CAREFUL attention to Caching your responses in your chosen

language.

When can I start? How can I start?

AAF Availability

• Thanks to the Linux Foundation, AAF is available from gerrit repo
- Use Maven to compile from ”osaaf”

• https://gerrit.onap.org/r/#/admin/projects/aaf/authz

- Stand alone Scripts are provided

- Docker Builds are provided
• Use with Docker “Cassandra” for quick “out of the build” kick the tires

• ONAP Devl Environment (https://wiki.onap.org/display/DW/Physical+Labs)

- AAF “Amsterdam” is currently running: RESTful API version is unchanged.

- After M4, AAF “Beijing” will be added (on different ports)

- Build/maintain your own. This is, after all, Open Source!

• CADI Libraries will be available in ”Maven”

• We’ll be working on additional Documentation after M4

https://wiki.onap.org/display/DW/Physical+Labs

s

Thank you!

Proposed Security Deliverables for Casablanca

March 26, 2018

Fundamentals of Open Source Security

• Threat modeling and analysis• Badging practices (e.g., CII
Badging)

• Technical steering committee
Design

Community Practices

Build

Deploy

• Vulnerability management

• Integration with external
security platforms/tools

• Secure coding practices

• Secure, auditable and versioned
repositories

Code Security

• Security defect resolution

• Automated security testing: SAST,
SCA, DAST

• Code management: coverage,
reviews & integrity checks

Runtime Security

• Automated security testing:
IAST

• Manual Penetration testing

• Patching & versioning strategy

• Security orchestration

• Runtime application self-
protection (RASP)

Casablanca Potential Deliverables

Design

Community Practices

Build

Deploy

Code Security Runtime Security

Providing recommendations
and project guidance

Casablanca Potential Deliverables

Design

Community Practices

Build

Deploy

Code Security Runtime Security

• Establish vulnerability
remediation guidelines

Providing recommendations
and project guidance

Casablanca Potential Deliverables

Design

Community Practices

Build

Deploy

Code Security Runtime Security

• Establish vulnerability
remediation guidelines

Providing recommendations
and project guidance

• Document X.509 certificate
practices

Casablanca Potential Deliverables

Design

Community Practices

Build

Deploy

Code Security Runtime Security

• Establish vulnerability
remediation guidelines

• Develop key threat analytics

Providing recommendations
and project guidance

• Document X.509 certificate
practices

Casablanca Potential Deliverables

Design

Community Practices

Build

Deploy

Code Security Runtime Security

• Establish vulnerability
remediation guidelines

• Enhance static code scanning
integration/automation

• Develop key threat analytics

Providing recommendations
and project guidance

• Document X.509 certificate
practices

Casablanca Potential Deliverables

Design

Community Practices

Build

Deploy

Code Security Runtime Security

• Establish vulnerability
remediation guidelines

• Enhance static code scanning
integration/automation

• Develop key threat analytics

Providing recommendations
and project guidance

• Document X.509 certificate
practices

• Recommended protocols and
protocols to avoid

Casablanca Potential Deliverables

Design

Community Practices

Build

Deploy

Code Security Runtime Security

• Establish vulnerability
remediation guidelines

• Enhance static code scanning
integration/automation

• Develop key threat analytics

• Design pluggable authorization
model

Providing recommendations
and project guidance

• Document X.509 certificate
practices

• Recommended protocols and
protocols to avoid

Casablanca Potential Deliverables

Design

Community Practices

Build

Deploy

Code Security Runtime Security

• Establish vulnerability
remediation guidelines

• Enhance static code scanning
integration/automation

• Develop key threat analytics

• Design pluggable authorization
model

Providing recommendations
and project guidance

• Document X.509 certificate
practices

• Enhanced credentials
management, OAuth support

• Recommended protocols and
protocols to avoid

Casablanca Potential Deliverables

Design

Community Practices

Build

Deploy

Code Security Runtime Security

• Establish vulnerability
remediation guidelines

• Enhance static code scanning
integration/automation

• Develop key threat analytics

• VNF package security:

• Design pluggable authorization
model

Providing recommendations
and project guidance

• Document X.509 certificate
practices

• Enhanced credentials
management, OAuth support

• Recommended protocols and
protocols to avoid

Casablanca Potential Deliverables

Design

Community Practices

Build

Deploy

Code Security Runtime Security

• Establish vulnerability
remediation guidelines

• Enhance static code scanning
integration/automation

• Develop key threat analytics

• VNF package security:

• Design pluggable authorization
model

Providing recommendations
and project guidance

• Document X.509 certificate
practices

• Enhanced credentials
management, OAuth support

• Integrity verification at
instantiation• Recommended protocols and

protocols to avoid

Casablanca Potential Deliverables

Design

Community Practices

Build

Deploy

Code Security Runtime Security

• Establish vulnerability
remediation guidelines

• Enhance static code scanning
integration/automation

• Develop key threat analytics

• VNF package security:

• Design pluggable authorization
model

Providing recommendations
and project guidance

• Document X.509 certificate
practices

• Enhanced credentials
management, OAuth support

• Service provider artifact signing

• Integrity verification at
instantiation• Recommended protocols and

protocols to avoid

Casablanca Potential Deliverables

Design

Community Practices

Build

Deploy

Code Security Runtime Security

• Establish vulnerability
remediation guidelines

• Enhance static code scanning
integration/automation

• Develop key threat analytics

• VNF package security:

• Design pluggable authorization
model

• PNF use orchestrated by ONAP

Providing recommendations
and project guidance

• Document X.509 certificate
practices

• Enhanced credentials
management, OAuth support

• Service provider artifact signing

• Integrity verification at
instantiation• Recommended protocols and

protocols to avoid

Casablanca Potential Deliverables

Design

Community Practices

Build

Deploy

Code Security Runtime Security

• Establish vulnerability
remediation guidelines

• Enhance static code scanning
integration/automation

• Develop key threat analytics

• VNF package security:

• Design pluggable authorization
model

• PNF use orchestrated by ONAP

Providing recommendations
and project guidance

Your input please

• Document X.509 certificate
practices

• Enhanced credentials
management, OAuth support

• Service provider artifact signing

• Integrity verification at
instantiation• Recommended protocols and

protocols to avoid

s

