
© 2018 Arm Limited

Brian Brooks <brian.brooks@arm.com>

Tina Tsou <tina.tsou@arm.com>

DP Benchmarking
on Arm

NFV Data Plane Benchmarking @ ONS
NA ‘18

Sirshak Das <sirshak.das@arm.com>

© 2018 Arm Limited 2

Use Case

VPP

MUSDK

l2xc / ip4

• L2 cross connect

• IPv4 routing

• 64B @ 10Gbps

• Single flow & direction

• Single core

© 2018 Arm Limited 3

Tracing Packets
How does the packet

traverse the graph?

© 2018 Arm Limited 4

Runtime Clocks ARMv8 Generic Timer
Not CPU clock cycles!

$ dmesg | grep MHz
[0.000000] Architected cp15 timer(s) running at 25.00MHz (phys).
[0.000001] sched_clock: 56 bits at 25MHz, resolution 40ns, wraps every 4398046511100ns

62ns

17ns

9ns

155ns

7ns

51ns

© 2018 Arm Limited 5

Batch Size

64 128 256 512 1024

M
p

p
s

64 128 256 512 1024

%
 t

im
e

mrvl-pp2-input ethernet-input l2-input

l2-output mrvl-pp2-output
VLIB_FRAME_SIZE 64 128 256 512 1024

Vectors/Call 64 128 256 512 1024

I/O device can fill big frames

Does batch size
affect performance?

© 2018 Arm Limited 6

Identifying Hotspots

First access to packet data

Why is memory access the hotspot?

© 2018 Arm Limited 7

FRAMEFRAME

Dual-loop Explained

Loop unrolled twice
Loop body interleaved

Prefetch 1 iteration ahead

p0

p1

p2

p3

p4

p5

p6

p245

p255

…

p
ro

ce
ss

p
re

fe
tc

h

p0

p1

p2

p3

p4

p5

p6

p245

p255

…

p
ro

ce
ss

p
re

fe
tc

h

…

© 2018 Arm Limited 8

I/O Memory Latency

0

10

20

30

40

50

60

70

80

90

100

n
s

2p2660v4 armada8040

RX data serviced over DDR
in I/O coherent system

RX data serviced from
cache via cache stashing

© 2018 Arm Limited 9

Tuning Prefetches

Stride Mpps Clocks

+1 3.47 1.53e0

+2 3.74 1.13e0

+3 3.82 1.03e0

+4 3.78 1.04e0

+5 3.76 1.04e0

Stride Mpps Clocks

+1 3.33 1.85e0

+2 3.48 1.49e0

+3 3.62 1.29e0

+4 3.62 1.18e0

+5 3.75 1.10e0

+6 3.77 1.05e0

+7 3.77 1.03e0

+8 3.78 1.03e0

+9 3.77 1.04e0

+10 3.75 1.06e0

Dual Loop Single Loop

S1 S2 Mpps Clocks

+1 +8 3.68 1.03e0

+2 +8 3.77 1.01e0

+3 +8 3.71 1.05e0

+2 +9 3.81 9.58e-1

+2 +10 3.81 9.58e-1

+2 +11 3.82 9.49e-1

+2 +12 3.84 9.24e-1

+2 +13 3.84 9.15e-1

+2 +14 3.82 9.37e-1

+3 +13 3.80 9.49e-1

Single Loop – Split PF

Is load-to-use time the
best we can “predict”?

61ns

37ns

Tune separately for
L1 and L2 latencies

© 2018 Arm Limited 10

Avoiding Bottlenecks

“The L1 memory system is non-blocking and
supports hit-under-miss. For Normal
memory, up to six 64-byte cache line
requests can be outstanding at a time.
While those requests are waiting for
memory, loads to different cache lines can
hit the cache and return their data.”

ARM® Cortex®-A72 MPCore Processor Technical Reference Manual

Load Store Unit busy?
Prefetching combined with

loop unrolling is demanding!

© 2018 Arm Limited 11

Types of Data Accesses

Device descriptor

vlib_buffer_t

Frame Size Vector
(4B)

Descriptor
(32B)

Buffer
(128B)

64 .25KB 2KB 8KB

128 .5KB 4KB 16KB

256 1KB 8KB 32KB

512 2KB 16KB 64KB

vlib_physmem_region_t

© 2018 Arm Limited 12

Initial Remarks

Observations

• Most hotspots are memory accesses

• Software-defined data placement
consumes processing cycles

• Unintentionally ordering memory
accesses can slow the system down

• Compiler may fuse loops which alters
memory access pattern from original
program order

Further Directions

• Leverage PMU data

• Compiler and C library versions

• Multicore scaling

• Platforms

• Cavium, Huawei, Qualcomm, …

© 2018 Arm Limited 13

Preliminary Results
64B packet – single flow – single core

l2xc ip4-routing

M
p

p
s

Basline New

1.31x
1.39x

64 128 256

%
 li

n
e

ra
te

l2xc ip4-routing22

© 2018 Arm Limited 14

The path to on Arm

Workload Scale Performance Analysis Software

Hardware

CSIT

FD.io Lab
Processors

I/O

Accelerators

Tuning & Optimization

Upstream

Toolchain

Libraries

OS

Hotspot & Bottleneck
Identification

© 2018 Arm Limited 15

The Path to on Arm

• Workload Scale

• Continue integration of Arm-based platforms into FD.io lab

• Adopt and run CSIT on a diverse range of machines and topologies

• Performance Analysis

• Distill critical runtime components affecting performance

• Identify solutions to hotspots and/or bottlenecks

• Upstream

• Integrate solutions back into open source

1616

Thank You!
Danke!
Merci!
谢谢!
ありがとう!
Gracias!
Kiitos!
감사합니다
धन्यवाद

© 2018 Arm Limited

© 2018 Arm Limited 17

gcc (Ubuntu/Linaro 5.4.0-6ubuntu1~16.04.9) 5.4.0 20160609

ldd (Ubuntu GLIBC 2.23-0ubuntu10) 2.23

$ cat /proc/cmdline

console=ttyS0,115200 root=/dev/sda1 rw

$ cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

16

$ lscpu

Architecture: aarch64

Byte Order: Little Endian

CPU(s): 4

On-line CPU(s) list: 0-3

Thread(s) per core: 1

Core(s) per socket: 2

Socket(s): 2

CPU max MHz: 2000.0000

CPU min MHz: 100.0000

Hypervisor vendor: (null)

Virtualization type: full

© 2018 Arm Limited 18

“Debugging is the act of asking questions and answering them, not guessing what the
answer is.

You want to form questions, not hypotheses. Answers to questions constrain hypotheses.

We repeat this process. Specific questions.. Specific answers.. More specific questions..
More specific answers.. And then.. that ‘hypothetical leap’ is often not a leap at all. It’s a
step across a puddle.

That is how we debug. We debug by having the cycle of questions and answers.

We are not magicians. We are the wizard of Oz sweating behind a curtain frenetically
turning a crank trying to figure out the problem.”

Bryan Cantrill

Debugging Under Fire: Keep your Head when Systems have Lost their Mind

