

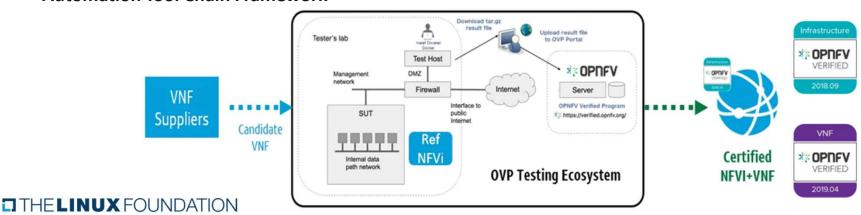
Technical F2F Work Shop – January 13-16, 2020

RC Workstream: Key Updates

Facilitator: Mike Fix, Cedric Olivier, Rajesh Rajamani, Kanag

THE LINUX FOUNDATION

Content & MVP Targets



Mike

Progress to Date | Key Accomplishments

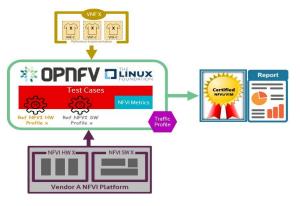
Objectives

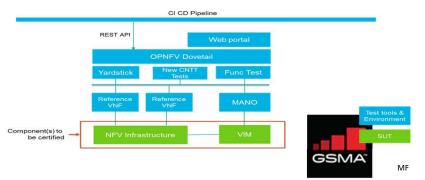
- Re-write(WIP) for Certification Process/Frameworks/Badging
- Onboard Additional Team Support (Frameworks), Methodologies, Badging
- Stage Jenkins Hosts & Prep Health/Smoke Suites
- Perform initial compliance validations
- Identify Gaps in initial Alpha RI Release and expected compliance validations
- Initial Badging Framework for NFVI | VNFs
- Certification Process Drafted
- Automation Tool Chain Framework

Level Set on MVPs

Mike

Initial Badging Framework for NFVI | VNFs


- ✓ Lab setup
- ✓ Compliant requirements
- ✓ Execution empirical, verification & validation
- ✓ Evidence meeting qualifications
- ✓ Governance (Badging) reviews and badging


Certification Process Drafted

- ✓ Certified Lab utilized
- ✓ Test Case Traceability to req's
- ✓ Execution complete & passing
- ✓ Results Collation normalized & centralized
- ✓ Evidence meeting qualifications
- ✓ Governance reviews of Entry/Exit criteria and certification

Automation Tool Chain Framework

- ✓ Refactor existing OVP toolchain
- ✓ Versatile test harnesses using standard interfaces and services
- ✓ **Supplier Integration enabling** VNF testing using Supplier Apparatus
- ✓ Adaptable & Portable Tool Chaining across releases

THE LINUX FOUNDATION

1

Progress: Initial Content Creation

NFVI

- Ch01: Introduction
- ♥ Ch02: NFVI E2E C&V Framework Requirements
- alpha Ch03: NFVI Test Case Requirements
- alpha Ch04: NFVI TC Traceability to RA Requirements.

<u>VFN</u>

- ✓ Ch05: VNF E2E C&V Framework Requirements
- alpha Ch06: VNF Test Case Requirements
- alpha (1) Ch07: VNF TC Traceability to RM Requirements.

<u>Dev</u>

- alpha O Ch08: E2E Framework Integration.
- Ibha 🕒 Ch09: NFVI Tests Traceability to TC Requirements.
- alpha (!) Ch10: VNF Tests Traceability to TC Requirements.
- alpha Ch11: Gap analysis & Development

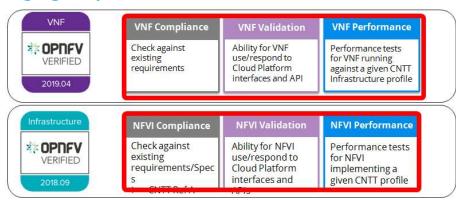
THE LINUX FOUNDATION

"RI-alpha & RC-pre alpha Phase"

Delivered - Snezka MVP

- Defined Certification
- Provide NFVI and VNF Certification Methodology
- Outline E2E Frameworks for Tools, Badges, and Process
- Included Gaps Identified During Installation

Next Release


- Include Normalized Results Template & Repo
- Finalize TC Requirements and Traceability
- Reach consensus on Entry & Exit Criteria

Progress: Badging Requirements

Kanag

Badging Requirements

Badging - granting of certification by the OVP to Suppliers of NFVI+VNF upon demonstrating testing confirms:

- NFVI adheres to CNTT RA/RM requirements.
- VNFs pass interoperability tests on target NFVI with acceptable levels of stability and performance.

Suppliers seeking NFVI & VNF certification furnish the following:

Category	OVP/CVC Expectation Supporting Artifact(s)		
Lab	Delivered test lab conforms to RI-x lab requirements for SUT Bare-metal H/W Validations		
Compliance	Installed software conforms to RM/RA requirements for components & options Manifest S/W Validations		
Validation	FR Validation of Component and API functional behavior meets requirements API & Platform Test Results		
Performance	NFR Validation of Component, Interface, and API, results are within baseline tolerance Performance Test Results		
Results Reporting	Test Results published into centralized and common repository & portal Normalized Results per Standard		
Release Notes	Supplier provides concluding remarks, links to artifacts, having met exit criteria for testing	Release Notes	

THE LINUX FOUNDATION

Progress: Badging Requirements.. Test Results

Kanag

** OPNFV
VERIFIED

2019.04

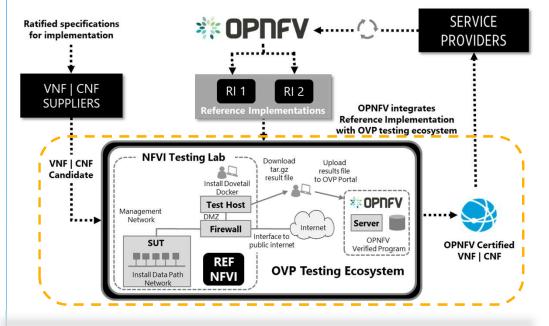
** OPNFV
VERIFIED

2018.09

Categorization. Test suites – Functional/Platform or Performance based

Results. Test results communicated as boolean (pass/fail), or Measurements Only

- Functional Pass/Fail assertions in a test script verify the FR met its stated objective delivered by the developer
- Performance-based Pass/Fail compares measured results with NFR KPIs &/or Reference VNF KPIs
- Measurement Results baseline measurements when no benchmarks available to compare


Collation | Portal. Criteria applied to collation and presentation of test-result data:

- RA number and name (e.g. RA-1 OpenStack)
- Version of software tested (e.g. OpenStack Ocata)
- Normalized results will be collated across all test runs (i.e. centralized database)
- Clear time stamps of test runs will be provided.
- Identification of test engineer / executor.
- Traceability to requirements.
- Summarized conclusion if conditions warrant test certification (see Badging Section).
- Portal contains links to certification badge(s) received.

Reference Certification

Objective

Rajesh

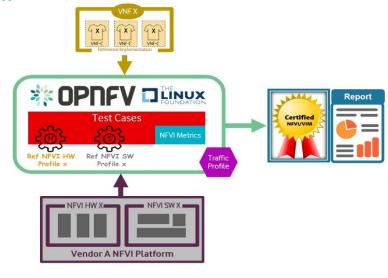
Deliver community certified NFVI | VNFs | CNFs to the Service Provider Marketplace

Goals

- Provide uniform approach for NFVI | VNF | CNF certification process, lifecycle, & badging
- Certify NFV | VNF | CNF on infrastructure, instantiation, teardown, performance, & resiliency
- Provide VNFs | CNFs with effective & efficient intake & onboarding for Lab Management
- Ensure test framework can be reused for Manifest, Empirical, and Interoperability validations for new distributions

Target Delivery (pending alignment)

March | April 2020 (v 1.0 - Alpha)
Aligns with Reference Architecture # 1 (OpenStack)


Progress: Certification Process Framework

Rajesh

Certification Process Framework

Core Principles

- Certification fulfilled by the OPNFV Verified Program (OVP), under the Linux Foundation Networking (LFN) umbrella
- Program overseen by the Compliance Verification Committee (CVC) providing tracking and governance
- NFVI and VNFs supplied by vendors must adhere to Reference Model (RM) and Reference Architecture (RA)

By Definition

- Verification conformance that NFVI is delivered per implementation specifications
- Validation testing performed confirms the actual output of a product meets the expected or desired outcome, or behavior
- Certification issuance of NFVI/VNF badges in recognition of the successful completion of verification and validation testing

Certification and issuance of NFVI+VNF badges

- ✓ Utilization of target RM/RA-x certified RI lab
- √ Traceable test cases to requirements
- ✓ Adoption & Execution of XTesting for RC pre-alpha validations
- ✓ Collation of Normalized Results in Centralized Repository
- ✓ Entry and exit criteria satisfied
- ✓ Required artifacts supplied to the OVP

THE LINUX FOUNDATION

.

Reference Certification Achievements | Targets for Alpha

NFVI Compliance

Scope & Test Strategy

- Manifest Verifications verify NFVI matches hardware and software profile specifications for RM/RA
- Empirical Validations baseline NFVI and Ref/Golden VNFs behaviors for future comparison
- Interoperability Validation performed leveraging VVP/CVC test suites to ensure VNF can be spun up, modified, or removed, on the target NFVI

Not In Scope

- · VNF functional testing
- ONAP as a MANO for VNFs

- Validating VNF's ability to be upgraded
- Georedundant and Load Testing

RI-Alpha & RC-Pre Alpha Release

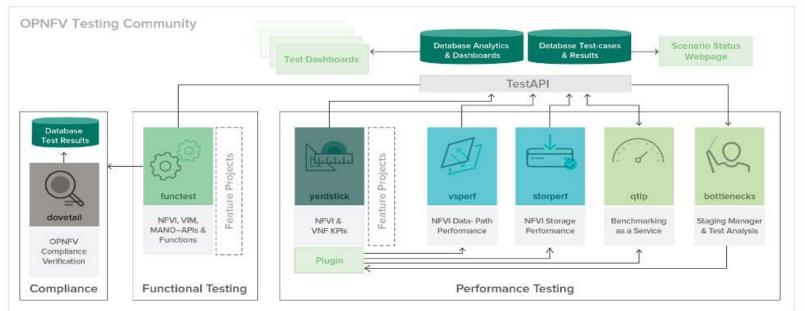
Xtesting and Xtesting CI meet Requirements for verification, compliance and certification:

- Assembly of multiple heterogeneous test cases
- OPNFV Releng Jenkins jobs to verify RI THELINUX FOUNDATION
- Test case results and logs for third-party certification review
- Deploy local CI/CD toolchains to verify RI compliance

Framework

- ✓ NFVI+VNF verifications performed against well defined profiles
- ✓ Utilizing common CICD frameworks across RI and RC via CIRV project:
 - ✓ RI verification (jjb in releng)
 - ✓ RC compliance and certification (local CI toolchains)
- ✓ Test cases delivered as <u>Docker containers</u>

- Infrastructure

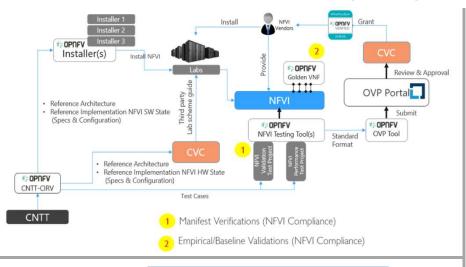

 **OPNFV
 VERIFIED

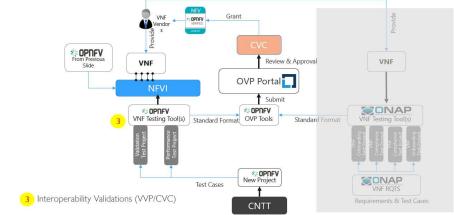
 2018:09

 VNF

 **OPNFV
 VERIFIED

 2018:09
- ✓ Automated CIRV deployments: PMO: local component deployment, FMO: Jenkins triggered deployments
- ✓ OPNFV test cases launched automatically for NFVI verification
- ✓ Test results stored in a <u>centralized test database</u> along with all artifacts (reports, logs, etc.) to <u>an S3 storage service</u>





CO

Certification Process | Gap Analysis

Process

- Certification based on successful delivery of:
 - 1) Manifest Verifications confirming NFVI delivered per RI-x requirements.
 - 2) Baseline Validations measuring FR/NFR behaviors using reference VNFs
 - 3) Interoperability Validations confirming capabilities, stability and perf

> For NFVI Certification:

- Vendor NFVI/VIM images under Test will be installed and configured
- For Phase 1, OPNFV FuncTest tests used for Compliance and Validation

> For VNF Certification.:

- Vendor VNF images are ingested by the CICD pipeline, implemented in lab
- VNF on-boarding and lifecycle operations validation is performed using upstream projects such as VNFSDK and VPP
- ➤ Test results submitted to OVP for review by committee. If results are validated, the vendor's application for certification is approved and the badge(s) awarded.

Gaps

- ➤ No automated means for Manifest (s/w) or Lab (h/w) Validations
- ➤ Need support vehicle for Installer changes (to meet RI-x specs)
- Normalization and Centralization of Results Alignment needed
- Storage and Performance scenarios (or tools) missing
- Need Installers which are OpenStack release agnostic
- Need priority on lab support with proactive monitoring

Exceptions: Certifications From the OVP Processions

Step 1: Step 4: Step 2: Step 3: Step 5: Step 6: Submission of Submission of Notification of Community Grant of Use of Participation Reviewers Review of Test **Program Marks** Form Work in Progress Work in Progress Work in Progress Gap Work in Progress Gap

OPNFV Verification Program (OVP) is a five step process resulting in the issuance of three badges: NFVI, VNF, and Lab

CNTT seeks to align with the OVP process, noting two Gaps above in process:

- Step 1 for client (NFVI/VNF) participation in badging and certification
- Step 2 for Test(ing) & tools utilized for testing.

Mitigating Process Gaps:

- Step 1: Friendly and Controlled Introductions in 2020, using key learnings to create formal participation mechanism
- Step 2: Use results from RI-alpha compliance validations with FuncTest and XTesting/XTestingCI and assess feasibility as a platform to be Dovetail compliant

THE LINUX FOUNDATION

Cedric

Results: Compliance

With RI-alpha

- Released first CNTT API compliance containers from OPNFV FuncTest
- Compliance containers forbid skipping tests for mandatory services/capabilities
- Commands deploy the full CI/CD toolchain within minutes
- Tests run for Compliance Verification include:
 - benchmarking
 - healthcheck
 - vnf (tests mainline API interopability.

Conclusion: Functest confirmed the RI System Under Tests (SUT) is compliant (aka Pass) per RA1 Chapter 5 (API) feature capability and exposure, with the caveate using Ocata vs. Pike.

Observations

- OpenStack Helm (OSH) doesn't support live migration and resize server for Ocata
- Compliance checks for Live Migration and Resize Servers blacklisted
- Metrics needed for API / data-plane benchmarking

Recommendations (for RC-alpha)

- Implement Stein, OSH supported
- Update RM/RA-1 OpenStack documentation for Stein
- Leverage XTesting to wrap the RI deployment calls, simplifying the RI "cookbook"

Next Steps

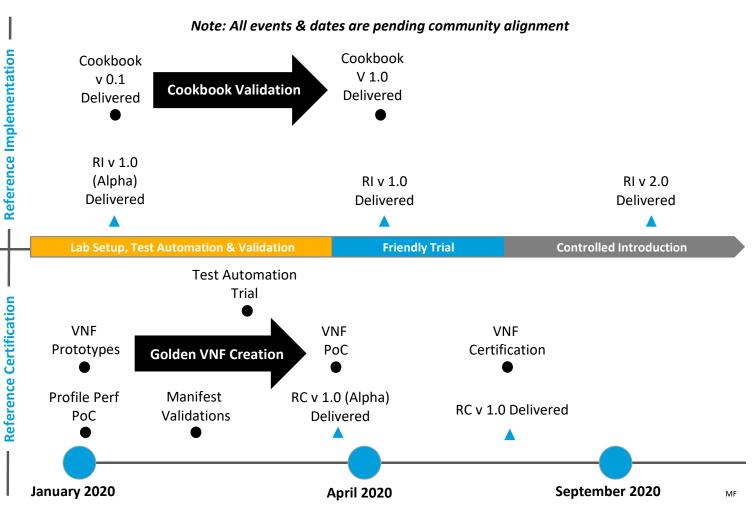
Mike

Current Status

Completed:

- RM | RA | RI Requirements
- Lab Requirements
- Initial Lab Secured
- S/W Deployed | Config
- Smoke Test | Sanity
- Continuous Deployment (with errors)

In-Progress


- Manifest > PDF & IDF
- Complete Lab PoC & Deliver Lab
- Create Cookbook & RI Topology artifact
- Implement PoC Key Learnings

Completed:

- Define & Vet Verification Methodology
- Stage Jenkins Hosts
- Prep Health/Smoke Suites
- Completed API test harness setup
- Initial API Compliance Validation

In-Progress

- Design & deliver VNF Prototypes
- Integrate upstream community performance & storage test cases

Reference Certification Challenges

- Availability of OVP | CNTT resources & active engagement
- OVP's ability to scale to demand, & alignment with CNTT objectives, including:
 - Fully automated ecosystem & badging process
 - Intuitive and efficient VNF on-boarding processes
 - Lab optimization & rationalization
 - Lab-use management & control strategy
 - Augmentation of OVP processes to include third party certification platforms & process
 - Clear and efficient third party certification requirements
 - Audits of lab certifications confirming availability, state (current), & accessibility
- Normalized test results with a centralized repository
- Manifest validations require an automated check of requirements

CNTT will maintain ownership of the Reference Certification until a satisfactory level of support, stability, & maturity is attained

Framework

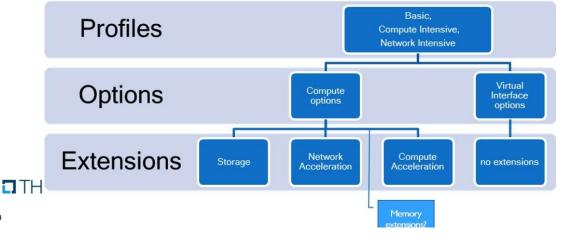
- High level architecture of NFVI verification & compliance testing fram
- High level architecture of VNF verification & compliance testing frame Cedric
- NFVI+VNF verifications will be performed against well defined instance types consisting of a HVV and SW Profile, Configured Options, and Applied Extensions (See image.)

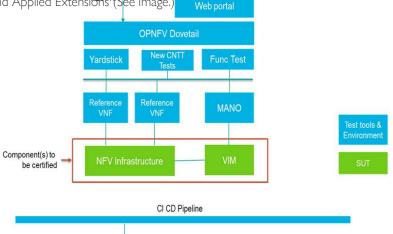
 Webports

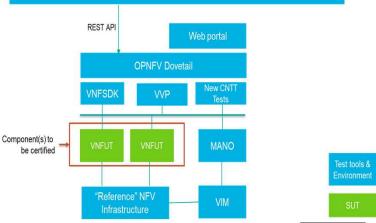
Assigned to Cedric

Alpha RI and Pre-Alpha RC

Leverage existing OPNFV testing knowledge (projects) and experience (history).


Utilize a common CICD framework across RI and RC. More specifically, implement:


- · RI verification (jjb in releng)
- RC compliance and certification (local CI toolchains)


OPNFV has a complete CI/CD toolchain continuously deploying and testing NFVI utilized for the CIRV project.

From a Process perspective, Jenkins triggers:

- CIRV deployments (PMO: local component deployment; FMO: automated deployments)
- Runs the OPNFV test cases part of the NFVI verification
- Publishes all test results in the <u>centralized test database</u> and all artifacts (reports, logs, etc.) to <u>an S3 compatible storage service</u> (PMO: all results and logs for certification are provided today via the CIRV and Daily Jobs (Functest); FMO: incorporation of additional test projects)

NFVI Compliance

Assigned to Cedric

In general, NFVI+VNF compliance process steps include:

- •Based on VNF's requirements, NFVI profile is selected B, C, N
- •NFVI readiness is checked for certification.
- •The test VNFs are on-boarded using automation scripts on the NFVI.
- •VNF on-boarding is validated by running functional tests to ensure that the on-boarding is successful.
- •VNF performance tests are executed and NFVI KPIs are recorded during the tests.
- •KPI comparison is run to compare NFVI KPIs with Golden KPIs, which serve as a reference for NFVI certification.
- •If NFVI KPIs meet Golden KPIs, NFVI is certified and granted a certification badge.
- •If NFVI KPIs do not meet Golden KPIs, no certification is provided.

For RI-Alpha and RC-pre-alpha release:

Xtesting* and Xtesting* CI meet the CNTT requirements about verification, compliance and certification:

- smoothly assemble multiple heterogeneous test cases
- generate the Jenkins jobs in OPNFV Releng to verify CNTT RI
- deploy local CI/CD toolchains everywhere to check compliance with CNTT
- dump all test case results and logs for third-party certification review
- The CI/CD approach (methodology) will be detailed in additional PRs.

All test cases must be delivered as <u>Docker containers</u> embedding <u>the Xtesting Python package</u> and <u>their test case execution description files</u> as required by Xtesting.

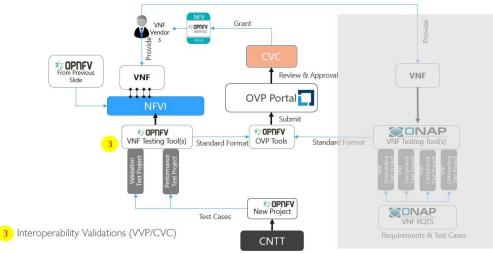
- · Docker containers simply enforce that the test cases are delivered with all runtime dependencies.
- All test projects should offer Xtesting CI description files (see <u>Functest site.yml</u>) to ease deploying plug-and-play <u>CI/CD toolchains in a few</u> commands

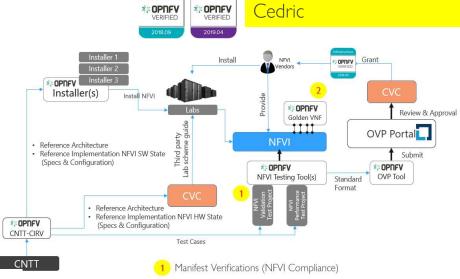
*Xtesting a simple framework to assemble sparse test cases and to accelerate the adoption of CI/CD best practices. By managing all the interactions with the CI/CD components (test scheduler, test results database, artifact repository), it allows the developer to work only on the test suites without diving into CI/CD integration.

*Xtesting CI tool deploys anywhere plug-and-play CI/CD toolchains in a few commands.

Framework

Principles


NFVI+VNF verifications will be performed against well defined instance types consisting of a HW and SW Profile, Configured Options, and Applied Extensions.

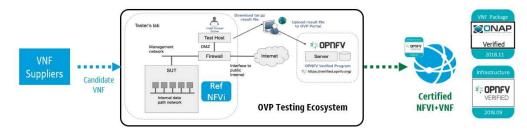

Leverage existing OPNFV testing knowledge (projects) and experience (history).

Utilize a common CICD framework across RI and RC. More specifically, implement:

- RI verification (jjb in releng)
- RC compliance and certification (local CI toolchains)

<u>OPNFV</u> has a complete CI/CD toolchain continuously deploying and testing NFVI utilized for the <u>CIRV</u> project.

Jenkins triggers:


- CIRV deployments
 - PMO: local component deployment
 - FMO: automated deployments
- Runs the OPNFV test cases part of the NFVI verification
- Publishes all test results in the <u>centralized test database</u> and all artifacts (reports, logs, etc.) to an S3 compatible storage service
 - **PMO:** all results and logs for certification are provided today via the CIRV and Daily Jobs (Functest)

Empirical/Baseline Validations (NFVI Compliance)

• FMO: incorporation of additional test projects)

Cedric

Certification Process | Gap Analysis

- 1. The process starts with VNF or NFVI vendors providing VNF images, NFVI/VIM images or NFVI hardware components for certification. While self-certification by VNF/NFVI vendors (with final validation by CVC) is allowed, the following example describes the use of a 3rd party OVP certified test labs for performing VNF certification
- 2. For VNF Certification:
 - The VNF images are ingested by the CI CD pipeline implemented in the certification lab and stored in local image repositories.
 - VNF on-boarding and lifecycle operations validation is performed against an implementation of CNTT reference architecture, leveraging existing OPNFV Intake Process. Upstream projects such as VNFSDK and VPP will define features/capabilities, test scenarios, and test cases to augment existing OVP test harnesses to be executed via the OVP Ecosystem.
- 3. For NFVI Certification:
 - Vendor NFVI under Test will be installed and configured
 - For Phase 1 of the CNTT RI, OPNFV Yardstick, FuncTest and Bottlenecks tests will define test scenarios and test cases needed for NFVI certification.
- 4. The test results are submitted on the OVP portal and the results will be reviewed by a committee of reviewers. If the tests are satisfactorily validated, the vendor's application for certification is approved and the marks are granted to the vendor. For a more detailed description of the OVP process, please refer to the documentation by following the link below

Exceptions: Certifications From the OVP Process Cedric

NFVI

- NFVI needs to be validated and expected to be in a required state. This state
 would be determined by running tests as described in CNTT RI. Once the target
 NFVI passes these tests, it would become a candidate for NFVI certification.
- NFVI+VNF validations consist of a three part process for Compliance, Validation, and Performance. Adherence to Security standards are equally important and addressed in Chapter 7 of CNTT RM.
- The three part verification process includes:
 - NFVI Manifest Validations
 - NFVI Verification (Compliance): NFVI is the SUT, ensuring NFVI is compliant with specs of RM and RA accomplished with Manifest Validations (performed via Echo Tests)
 - · Empirical Baseline measurements against targeted VNF families
 - Empirical Validation with Reference VNF (Validation): NFVI is the SUT, ensuring NFVI runs with Golden VNFs and is instrumented to objectively validate resources through consumption and measurement
 - Candidate VNF verifications
 - Candidate VNF Certification (Validation & Performance): VNF is the SUT, ensuring VNFs operate with RM and RA leveraging VVP/CVP/VFNSDK Test Suites
 - Security: Ensures NFVI+VNF is free from known security vulnerabilities, utilizing industry standard cyber security frameworks (Refer to CNTT Chapter 7 Security for additional test/verification details) Validations are performed against an Infrastructure Profile Catalog, VNF performance profile, and targeted VNF class or family for baseline measurements.

VNF

- VNF certifications confirm capability of VNF to interact with the target NFVI with a high degree of stability.
- Certification begins with confirmation of the NFVI delivered and verified based on B/N/C:
 - Basic: for VNF that can tolerate resource over-subscription and variable latency.
 - Network Intensive: for VNF that require predictable computing performance, high network throughput and low network latency.
 - Compute Intensive: for VNF that require predictable computing performance and low network latency.
- Suppliers adhere to documentation standards for test cases:
 - Test case Name
 - Test case description
 - Virtual Network function Name
 - Network function Feature/functionality name
 - Test case input parameters
 - Test case result attributes
 - · Test case version
- Validation is performed and Results Collated:
 - Interoperability validations for VNF functional testing defined.
 - Interoperability validations for VNF performance testing defined (IOPS, connection, threading, resource consumption).

Reference Certification Approach | Outcomes

Actions Underway Outcomes

Define requirements & criteria for profile based implementations & certifications

Clearly defined requirements to assess vendor software, hardware, and VNF solutions

Define badging requirements to achieve certification

Deliver compliant & stable VNFs | CNFs to CSPs

met through an robust & optimized test suite

Define, align, and select NFVI | VNF | CNF test case requirements, covering:

- Infrastructure
- Tear-Down
- Resiliency

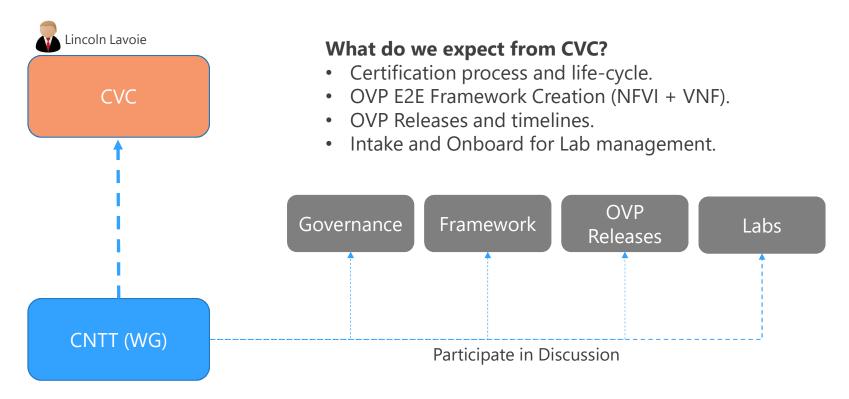
- Instantiation
- Performance
- Security

Establish guidelines and/or processes for:

- Entry | Exit Criteria
- Quality Assurance
- Test Categories
- Test Case In-Take

Ensure proper level of structure & discipline exists within test ecosystem to effectively manage & scale to demand

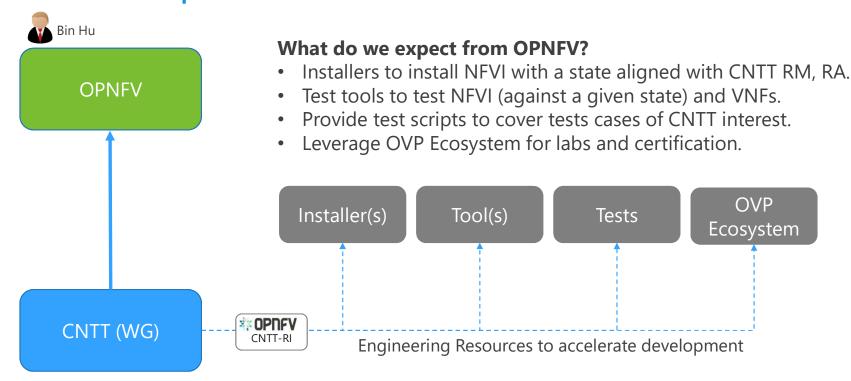
Ensure certification criteria and badging requirements are


Define & align across communities on the test framework & tooling

Optimized test ecosystem, designed to scale, manage, & perform VNF | CNF certifications

ITHELINUX FOUNDATION

Relationship with CVC


- CNTT will work directly with CVC to align with governance
- Output of CNTT will be input to release scope, labs needs, and augment governance where needed

Relationship with OPNFV and OVP

- CNTT will work directly with OPNFV via the RI Project
- Output of CNTT-RI will be RI requirements and test cases

Chapter 8 Team: North Star

Mission

Ensure Implementation of CNTT Reference Model and Reference Architecture meets industry driven quality assurance standards for compliance, verification and validation.

Objectives

- Data Driven RA Verification and Validations
- OPNFV, CVC, and OVP Processes used to onboard and check for NFVI compliance
 - **Guiding Tenets**
- Verification and Validations determine NFVI+VNF compliance
- Verification signals conformance to design requirement specifications
- Validations signals compliance that output of a product meets the expected, or desired outcome

THE LINUX FOUNDATION

 Ensure test harnesses can be ported and utilized across multiple distributions

Entry and Exit Quality Standards are satisfied

- **Certifications**, are out of scope as this measures adherence to development, however, no code is being delivered by testing
- OVP and CVC track and govern RM/RA verification

Scope

Scope & Test Strategy

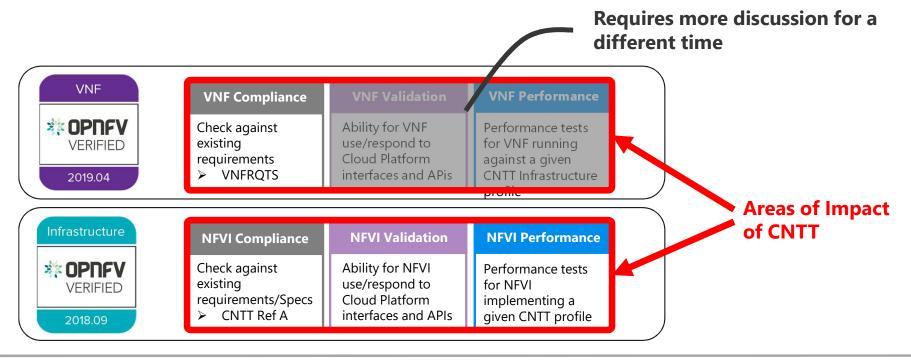
- Manifest Verifications verify NFVI matches hardware and software profile specifications for RM/RA
- Empirical Validations baseline NFVI and Ref/Golden VNFs behaviors for future comparison
- Interoperability Validation performed leveraging VVP/CVC test suites to ensure VNF can be spun up, modified, or removed, on the target NFVI

Not In Scope

- VNF functional testing
- ONAP as a MANO for VNFs

- Validating VNF's ability to be upgraded
- Georedundant and Load Testing

Different Distributions


Repeat the strategy of Manifest Verification, Empirical Golden VNF Validations, and Interoperability Testing for any new Distributions.

THE LINUX FOUNDATION

Verification & Validation Scope

Example Tests

- VNF Interoperability Testing
- Security Testing
- Scalability Testing

- Fault Recovery Testing
- VNF Coexistence
- HA Testing

Projects Identified

Barometer NFVBench * Pharos

<u>Doctor</u> SampleVNF

* Dovetail VSPerf

* Fuel Yardstick

<u>FuncTest</u>

- # Total OPNFV Projects = 31
- # CNTT-NFVI = 13 (potential value)
- # 5/13 NA for Review *Already
 Covered by Yardstick and Functest

Results

- # 6 Projects can be adopted (as is)
- # 4 We can add/augment TCs for gaps
- # 3 Create projects for new testing

THE LINUX FOUNDATION

Assessment Strategy

- Select Project by activity, use, and maturity state
- Compare Against Test Categories
- Identify Gaps
- Form Professional Opinion e.g. augment, adopt
- Solicit Strategic Partner Contributions

Test Categories

- (Hardware Validations) BareMetal HW & O/S validations
- (Component Validation and VNF Validation Config Only)
 VNF Interoperability validations
- (Platform Stability) Compute Component validations
- (Platform Resiliency) Control Plane Component validations

Next Steps

- Review Projects Identified during Antwerp not considered
- **Integrate TCs** from these projects into the delivery stream
- Discuss augmenting existing test projects, or create new
- Onboard Spirent Test Case contributions Where?
- Finalize Test-/Use- Case Needs

Test Category / Case Gap Summary.. Continued

Project	Purpose	Recommendation	
FuncTest	Functional interoperability validations	✓ ADOPT, as an RI suite. Covers 2k+ Openstack Interoperability Validations ✓ Augment to include Baremetal testing for Manifest Validations	
Yardstick	 VNF/Payload performance validations 	 ✓ ADOPT, 62 TCs, leverages Shaker and YAML for test-case development ✓ Augment to perform POD restarts and HA for Maria/Ceph restarts 	
VSPerf	 vSwitch perf testing 	✓ ADOPT, for OVS-DPDK validations with 32 perf and functional TCs ✓ Setup external packet generator to avoid latency caused by the tool.	
DoveTail	 Automation framework 	✓ ADOPT, with large number of test cases for conformance evaluation	
Barometer	 Platform availability and NW usage validations 	✓ ADOPT, for use of NFVI+VNF validations capturing Telemetry data ✓ Augment to include device specific resiliency testing and monitoring.	
"NEW"	Baremetal Validations	✓ CREATE New Baremetal Validations to verify engineering packages	
"Augment"	Spirent Validations	✓ Augment projects with 240 TC adds for load, scaling, cloud migration.	
"NEW"	Chaos Toolkit	✓ CREATE New, project to test POD resiliency by injecting chaos (failover)	
Bottlenecks	Stress Testing	XNot recommended with limited test sets and results categorization	
Doctor	Computer NFVI Fault Mgmt validations	XNot recommended with limited/no coverage for SDN, KVM, or containers	
XTesting	CICD tool chaining in CNTT validations.	? REQUIRES POC if CNTT NFVI requires ADOPTION and USE of tool chaining. ? There are no specific TCs , as XTesting is for chaining together CICD test projects, and not for NFVI validation.	
NFVBench	NFVI Perf Measurements (at physical hardware/host level)	 ✓ ADOPT, as a complement to vsperf and yardstick ✓ Augment to expand SRIOV and/or OVS-DPDK test cases. 	