
  

VNFC Level LCM Actions in ONAP 
Problem statement and proposals for solution 

 

 

 

Łukasz Rajewski (Orange) 

Yuriy Malakov (AT&T) 

Scott Blandford (AT&T) 

14.01.2020 



  

192.168.10.100 

192.168.10.110 

192.168.20.250 

192.168.20.240 

 vFW TD Scenario 

• Check Traffic on vPKG 

• Determine vFW/vPKG pairs 
for distribution with OOF 

• Move traffic from vFW 1 to 
vFW 2 reconfiguring vPGN 

• Check Traffic on vFW 1 

• Check Traffic on vFW 2 

vFW Traffic Distribution UC in El Alto – Impact of Service Design 

VNF 1/VF-Module 1 

VNF 2/VF-Module 2 

VNF 3/VF-Module 3 



  

LCM Action Execution on APPC Example Today 

• action – LCM action to execute 

• action-identifiers – identifies 
object to be modified – Today only 
vnf-id is accepted and vserver-id 
for OpenStack LCMs 

• request-parameters [Optional] – 
request specific parameters i.e. 
like vf-module-id in ConfigScaleOut 
– interpreted by APPC 

• configuration-parameters 
[Optional] – action specific 
parameters – merged with CDT 
template 

We always want to execute LCM operation of concrete device(s) – VMs/PNFs 
Determination how to access the device should be internal to the controller 



  

CDT Template Definition Example for Ansible – vFWDT UC (1) 

• book_name – name of Ansible playbook 
– may be a fixed value 

• vnf_instance – should be a name of vnf 
instance 

• NodeList – list of VM on which ansible 
playbook will be executed 
- ne_id – host name of VM – must be 

configured before in Ansible inventory file 

- fixed_ip_address – IP Address of VM – 
should be ONAP OAM address because 
Ansible must be able to reach this IP 

- Both can be taken from the AAI - from 
vnfc configuration 

 

 



  

CDT Template Definition Example for Ansible – vFWDT UC (2) 

Request merged with configuration-parameters Ansible Request Template in CDT 



  

CDT Template Definition Example for Ansible – vFWDT UC (3) 

• Here concrete device is being identified by 
vnf-id + configuration-parameters 

• In this case SO needs to find IP address, 
Hostname or receives this information from 
the workflow input parameters 

• Ideally SO should identify concrete vf-module 
and vnfc-instance if there is more than one 
VM in VNF 

• Identification may be much simpler if VNF 
would have its own VNFC controller 

• None of ONAP use cases (vLB/DNS, vFW) has it 



  

vserver-id 
vnfc-name 

VNFC1 

vf-module-id 

vnf-id 

vserver-id 
vnfc-name 

VNFC2 

UC #2’ 

Different types of VNF models in ONAP 

vserver-id 
vnfc-name 

VNFC1 

vf-module-id 

vnf-id 

UC #1 

vserver-id 
vnfc-name 

VNFC1 

vf-module-id 

vnf-id 

vserver-id 
vnfc-name 

VNFC2 

vserver-id 
vnfc-name 

VNFC1 

vf-module-id 

vserver-id 
vnfc-name 

VNFC2 

UC #3 

vserver-id 
vnfc-name 

VNFC1 

vf-module-id 

vnf-id 

vserver-id 
vnfc-name 

VNFC2 

vserver-id 
vnfc-name 

VNFC3 

vf-module-id 

vserver-id 
vnfc-name 

VNFC4 

UC #4 

vserver-id 
vnfc-name 

VNFC1 

vf-module-id 

vnf-id 

vserver-id 
vnfc-name 

VNFC2 

UC #2 



  

Current SO Building Blocks Supported Use Cases 

SO Building Block implementation: 

The SO building blocks are a set of database-driven, configurable and generic process steps to be leveraged 

through several actions defined as 'Macro' flows. For each of the macro flows, there are a set of actions to the 

orchestration services and various type of resources orchestrated by ONAP.  

Supported Services & Resource types  

These resource types are essentially the ones defined in the model - through the 

SDC framework. SO orchestrates service, vnf and vfModule building block for 

assign, create configure and activate.  

 

There is a lack of vnfc orchestration in ONAP that is required in order to support 

complex lifecycle management for various vnf use case.  

  

 Services   

 VNF (Virtual Network Function) 

 VF modules (i.e. a deployment unit, such as a HEAT stack) 

 VNFC  (virtual network function component) 

Service 

VNF 

VF Module 

VNFC 

VNFC 

VNFC 



  

SO MACRO Generic Building Block Orchestration  

Controller BB (BPMN + Java) 

Build Controller Context from inputs 
- Scope 
- Action 
- Actor 

CDS Path APPC/SDNC Paths 

LCM APIs CDS API 

Simplified logical flow 

Scope 
- service 
- pnf 
- vnf 
- vfModule 
- vnfc (to be added) 

 
NOTE: Scope drives  input 
action identifiers to controller 
LCM execution such as ssid, vnf-
id, vf-module-id, vnfc-name, 
etc.. 



  

LCM/Action Execution on VNFC Level GAPs  

• How SO should determine the vf-module-id? 
- Well known from the context in the instantiation time 

- Well known from the context in the ScaleOut time 

- There are situations when it should be resolved in a dynamic way 
• For ScaleIn (analysis of resources consumed, FIFO, FILO, etc..) 

• For Traffic Distribution – proportional distribution among modules, equal, only selected 
modules 

• HOW SO should determine VNFC Instance in vf-module for LCM 
operation 
- No problem when there is only one VNFC instance in vf-module 

- When there is more than one: 
• For closed loop event allow OOF using policy or workflow input context to derive the 

VNFC LCM operation execution.  



  

SO VNFC LCM Orchestration GAP 

• SO should determine common identifiers based on scope for network 
function such as vnf-id, vf-module-id, vserver-id, vnfc-name 

• SO should pass input params for which are passed to workflow 
context  

• Orchestrator should not be responsible for determining provisioning 
configuration parameters for each action within a scope such as IP 
address, port, etc.. it should be internal to the controller 

• Device communication parameters should be common and should not 
be model specific – it simplifies controller – the best source of this 
data is AAI and/or MDSAL i.e. for IP addresses in AAI we have 
- ipv4-oam-address – VNF level 
- ipaddress-v4-oam – PNF level 
- ipaddress-v4-oam-vip - VNFC level – the best source for VNFC OAM 



  

Determination of key identifers dynamically with OOF 

1. vf-module-id can come from 
the SO request input as well 
as vnfc-type 

2. Today vf-module-id can be 
determined by OOF 
- OOF HAS (Homing, Allocation, 

Selection) since Dublin can resolve vf-
module-id 

- Determined by standard HAS policies 
which in our case could be service, 
vnf, vnfc-type or action specific. 

3. OOF not needed when 
- Only one vf-module with specified 

vnfc-type exists in VNF 

- vf-module-id comes from the workflow 
input or is determined by the workflow 
(i.e. as a result of ScaleOut operation) 



  

 

 

 

VNFC support for CDS 



  

SO CDS Action Execution Request Example (1)  

• actionIdentifers - determined by SO and executed workflow 

• $actionName-properties – inserted by SO base on action scope and workflow input 
- AAI enriched attributes i.e. identifiers of VNF, vf-module, OAM IP address 
- Close Loop event information 

- Static information  

• Each action can also have dedicated step(s) for assignment of extra attributes with custom 
properties used i.e. in the Kotlin script implementing the action 
- Cross vf-module or vnfc dependency i.e. IP address from one vf-module used in reconfiguration of the other one 



  

SO CDS Action Execution Request Example (2)  

scope: pnf   action: reconfigure-pnf scope: vnf   action: config-deploy 

For vnfc support just new scope must be introduced on SO side 
which will generate missing identifiers in the action properties part 
of the payload. Rest is implementation of action on blueprint side 



  

 

 

 

VNFC support for APPC 



  

APPC – Existing AAI integration for VNFC recognition 

2019-11-20T14:18:05,498 | AAIResourceNode | Populating Final Context       

2019-11-20T14:18:05,499 | AAIResourceNode | Populating Context Key = tmp.vnfInfo.vm[0].vnfc-count Value = 1  

2019-11-20T14:18:05,499 | AAIResourceNode | Populating Context Key = tmp.vnfInfo.vm[0].vnfc-name Value = vfwl01pgne22a        

2019-11-20T14:18:05,499 | AAIResourceNode | Populating Context Key = tmp.vnfInfo.vm[0].cloud-region-id Value = RegionOne      

2019-11-20T14:18:05,499 | AAIResourceNode | Populating Context Key = tmp.vnfInfo.vm[0].vserver-selflink Value = http://192.168.186.11:8774/v2.1/1f6284684eb44ae79a0a5677e 

2019-11-20T14:18:05,500 | AAIResourceNode | Populating Context Key = tmp.vnfInfo.vm[0].tenant-id Value = 1f6284684eb44ae79a0a5677e12da7eb      

2019-11-20T14:18:05,500 | AAIResourceNode | Populating Context Key = tmp.vnfInfo.vm[0].group-notation Value = null            

2019-11-20T14:18:05,500 | AAIResourceNode | Populating Context Key = tmp.vnfInfo.vm[0].cloud-owner Value = CloudOwner         

2019-11-20T14:18:05,500 | AAIResourceNode | Populating Context Key = tmp.vnfInfo.vm[0].vserver-name Value = vfwl01pgne22a     

2019-11-20T14:18:05,500 | AAIResourceNode | Populating Context Key = tmp.vnfInfo.vm[0].vnfc-ipaddress-v4-oam-vip Value = null 

2019-11-20T14:18:05,500 | AAIResourceNode | Populating Context Key = tmp.vnfInfo.vm[0].vf-module-id Value = b8c1d740-164d-4ca4-9314-a7406041cde9                

2019-11-20T14:18:05,500 | AAIResourceNode | Populating Context Key = tmp.vnfInfo.vm[0].vnfc-type Value = vFWDTvPKG            

2019-11-20T14:18:05,501 | AAIResourceNode | Populating Context Key = tmp.vnfInfo.vm[0].vnfc-function-code Value = vFWDTvPKG   

2019-11-20T14:18:05,501 | AAIResourceNode | Populating Context Key = tmp.vnfInfo.vm[0].vserver-id Value = 8ed45a28-ae08-4f75-824c-d8db78af1c2c 

2019-11-20T14:18:05,501 | AAIResourceNode | VNFCNAME 0vfwl01pgne22a        

2019-11-20T14:18:05,501 | AAIResourceNode | VMCOUNT IN GETALLVSERVERS 1    

2019-11-20T14:18:05,501 | AAIResourceNode | VMSWITHNOVNFCSCOUNT IN GETALLVSERVERS 0         

2019-11-20T14:18:05,502 | AAIResourceNode | VMSWITHNOVNFCSCOUNTFOR VFMODULE IN GETALLVSERVERS 0              

2019-11-20T14:18:05,502 | AAIResourceNode | VMCOUNT FOR VFMODULE IN GETALLVSERVERS 0  



  

CDT Template Definition for VNFC - Option 1 - Available 

• ne_id – fixed value 

• fixed_ip_address – APPC 
resolves from AAI -> generic-VNF 
-> ipv4-oam-address 

• action-identifiers: vnf-id 

• Can be applied for: 
- UC #1 

- UC #2 when only one VNFC can be 
reconfigurable 

- UC #2, 3, 4 when one VNFC acts a role of 
VNFC controller in VNF – ne_id ipv4-oam-
address must point this controller 

- UC #2, 3, 4 when VNF has external VNFC 
controller (VNF Manager) – ne_id ipv4-
oam-address must point this controller 

 

 

 



  

CDT Template Definition for VNFC - Option 2 - Available 

• Requires vnfc info in AAI 

• ne_id – APPC resolves from AAI -> 
VNFC -> vnfc-name 

• fixed_ip_address – APPC resolves 
from AAI -> VNFC -> vnfc-
ipaddress-v4-oam-vip 

• action-identifiers: vnf-id 

• VNFC type selected by nfc-function 
type 

• Can be applied for: 
- UC #1 

- UC #2 – when each action type executed on 
different vnfc-type 

- UC #4 like UC #2 + only one instance of 
VNFC type in VNF 



  

CDT Template Definition for VNFC - Option 3 - Available 

• Requires vnfc info in AAI 

• ne_id – APPC resolves from AAI -> 
VNFC -> vnfc-name 

• fixed_ip_address – APPC resolves from 
AAI -> VNFC -> vnfc-ipaddress-v4-oam-
vip 

• action-identifiers: vnf-id 

• VNFC type selected by vnfc-function type 

• Requires APPC to have many templates 
for one VNF selected by vnfc type – 
today we cannot 

• Can be applied for: 
- UC #1 

- UC #2  

- UC #4 only one instance of VNFC type in VNF 

 

 

 



  

CDT Template Definition for VNFC - Option 4 - Proposal 

• Requires vnfc info in AAI 

• ne_id – APPC resolves from AAI -> VNFC 
-> vnfc-name 

• fixed_ip_address – APPC resolves from 
AAI -> VNFC -> vnfc-ipaddress-v4-oam-
vip 

• action-identifiers: vnf-id, vnfc-name 

• VNFC type selected by nfc-function type 

• Requires existing (but disabled) 
mechanisms of VNFC support to be 
enabled in APPC 

• SO finds VNFC instance (vnfc-name) 

• Can be applied for: 
- UC #1 

- UC #2  

- UC #3 

- UC #4 



  

CDT Template Definition for VNFC - Option 5 - Proposal 

• Requires vnfc info in AAI 

• ne_id – APPC resolves from AAI -> VNFC -
> vnfc-name 

• fixed_ip_address – APPC resolves from AAI 
-> VNFC -> vnfc-ipaddress-v4-oam-vip 

• action-identifiers: vnf-id 

• filtering by request-parameters: vf-module-
id, vnfc-type 

• SO determines vf-module-id and vnfc-type. 
Most likely vnf-type can come from the input 

• Can be applied for: 
- UC #1 

- UC #2  

- UC #3 

- UC #4 

request-para 

request-para 

The best option that allows to configure concrete VM for vnf, vf-module and vnfc scope 



  

 

 

 

Summary 


