
The Methods and Implementation of UUI Frontend
Architecture

15th Jan, 2020

Shen Tao
Xu Ran

Overview

• The frontend architecture methods applied in UUI
• The frontend architecture implementation of UUI
• The presentation of the frontend structure of UUI and the conclusion

and suggestion of frontend architecture best practice

The Frontend Architecture Methods Applied in UUI

Reasonable Project Structure

• A reasonable project structure can
- Avoid the messy structure when there is lots of business files and make it

easier to find the particular parts of codes and improve the development speed
- Segregate the business and functional codes such as data model and http

request methods to make the program ‘safer’
• A reasonable project structure should:
- Take care of the project technology stack
- Take care of the features of specific business

Component-based Architecture

• Common sense of modern framework
• Framework like Angular is already component-based
- For a mature program, we need a more careful architecture. We have to

extract the public components and make them easier to reuse.

Frontend and Backend Separation

• This is the essential part of modern frontend development which
includes advantages such as faster development and modularity.

• Thanks to Angular, the separate frontend and backend is already in
embryo.

• For a modern frontend project, we have to support more capabilities to
adapt the requirement of swift and separate development. Such as:
running individually, mocking interface and deploying independently.

The Frontend Architecture Implementation of UUI

• We refer to many articles and high-star Angular
projects in Github. According to those best
practices and the actual condition of our business,
we build our project as the image:

• The core parts of our architecture are the core,
shared and views folders
- The core folder is the container of the core functional

codes for the whole project such data models and http
request methods.
- The shared folder is the container for all the public

components.
- The views folder is the container of the business

components which is the main part of development.

Reasonable Project Structure

Component-based Architecture - overview

• To apply this method, we extract the components from the original
codes and make the business codes more 'pure'.
- We extract the dumb components which are just responsible for presenting

something to the DOM
- We don't extract those components that are responsible for keeping track of

state and caring about how the program works which are called smart
components
- Things will be different if other framework such as react is used, and we just

take advantage of Angular.

Component-based Architecture - Pie Component

Frontend and Backend Separation – mock data

• The goal of mock data scheme:
- Build the ‘one command start’ system to start the project in mock environment
- Separate the business codes and the mock data codes to make the mock data

module an independent one
- Swift development

• Difficulties:
- Some original API paths consist of variable which makes it impossible to be mocked

by the local data files
- The RESTful standard allows one single API path to hold several different request

methods: POST, GET, DELETE, PUT
• Solutions:
- Use the ‘rewrite’ middleware to rewrite specific API paths
- Create the ‘routes.js’ file to list the API paths which need to be rewrote
- Use the interface interception system to transfer all kinds of request to GET method

Frontend and Backend Separation – mock data

Goals

Solutions

Configuration

Frontend and Backend Separation – mock data

routes.js

package.json

server.js – data interception faker.js

• We have recorded the work about how we build up the mock scheme
in detail. Click this wiki if you are interested.

The Presentation of the Frontend Structure of UUI and
the Conclusion and Suggestion of Frontend Architecture

The Presentation of The Frontend Architecture of UUI - Project
Structure

├── src

│ ├── app

│ │ ├── core

│ │ │ ├── models

│ │ │ └── services

│ │ ├── mock

│ │ │ ├── fake # container of all mock data generated by faker.js

│ │ │ ├── json # container of all local mock data files

│ │ │ ├── routes.js # config file of proxy routes

│ │ │ └── server.js # mock data server

│ │ ├── shared

│ │ │ ├── components # container of all general components

│ │ │ └── utils

│ │ ├── views # container of all business pages

│ │ │ ├── alarm

│ │ │ └──

│ │ ├── app-routing.module.ts

│ │ ├── app.component.css

│ │ ├── app.component.less

│ │ ├── app.component.html

│ │ ├── app.component.ts

│ ├── assets

│ │ ├── i18n # container of internationalization assets

│ │ └── images

│ ├── environments

│ ├── favicon.ico

│ ├── index.html

│ ├── style.css

│ ├── style.less

│ ├── my-theme.css

│ ├── my-theme.less

│ ├── main.ts

│ ├── polyfill.ts

│ ├── test.ts

│ ├── tsconfig.app.json

│ ├── tsconfig.spec.json

│ ├── typing.d.ts

├── .angular-cli.json

├── CHANGELOG.md # recorder of all the important changes

├── karma.conf.js

├── localproxy.conf.json # config for mock server proxy

├── proxy.conf.json # config for server proxy

├── tsconfig.json

├── package.json

└── README.md

The Presentation of The Frontend Architecture of UUI – use
case in Frankfurt Release
• To support the use cases of 5G Slicing business, we develop CSMF

and NSMF portal to provide customers and operators with functions
such as creating service, activing/de-activing/terminating slicing and
monitoring service.
- CSMF is a portal that provides service for customers. So we have developed a

new system to support functions such as creating orders, managing slicing
order, managing slicing business and monitoring slicing business
- NSMF is a portal that provides service for operators. Since the original UUI

project aims to provide service to the network operators, we merge NSMF
portal into the original system.

CSMF Portal

The Conclusion and Suggestion of Frontend Architecture

• reasonable project structure
- Build reasonable project structure to make the project safer, clear and easy to

develop
• component-based architecture
- Angular is component-based and most all the components can be created by

Angular-cli
- Dumb component can be used in Angular framework to avoid useless work

and make the structure more clear
• frontend and backend separation
- Mock data scheme which we have built has made the frontend project totally

divided from the backend and once both sides have decided the data structure,
the frontend can develop without the data support of backend which is the true
meaning of frontend and backend separation

s

Thanks

