
  

Change Management Extensions 
Frankfurt and Beyond 

 

 

 

Łukasz Rajewski (Orange) 

Zu Qiang (Ericsson) 

Ajay Mahimkar (AT&T) 

14.01.2020 



  

Change Management Vision  

Design:  

• Fast  

• Easy 

• Flexible 

• Complete 

Scheduling:  

• Automated  

• Intelligent  

• Cognitive   

Execution:  

• Automated 

• Safe 

• E2E 



  

Rolling changes for network-wide deployment  

Day 1 

Day 1 

Day 1 

Day 2 

Day 2 

Day 2 

Day 3 

1. Minimize impact during 

deployment  
• Changes may require interruption 

to service  

• Leverage redundancy  

2. Minimize impact post 

deployment 
• Unexpected performance  

• Damage control through early halt  

 

 

    Reduced service downtime 
• Deployment optimization 

• Appropriate scheduling  



  

192.168.10.100 

192.168.10.110 

192.168.20.250 

192.168.20.240 

 vFW TD Scenario 

• Check Traffic on vPKG 

• Determine vFW/vPKG pairs 
for distribution with OOF 

• Move traffic from vFW 1 to 
vFW 2 reconfiguring vPGN 

• Check Traffic on vFW 1 

• Check Traffic on vFW 2 

vFW Traffic Distribution UC (El Alto) 

VNF 1/VF-Module 1 

VNF 2/VF-Module 2 

VNF 3/VF-Module 3 



  

vFW Traffic Distribution Workflow (El Alto) 

• Algorithm for Traffic Distribution Workflow 

- Traffic Distribution Optimization algorithm aims to deliver extra information for DistributeTraffic LCM in 
APPC  

- Anchor Point – Firstly VF-module instance that will perform an operation of Traffic Distribution. In the 
future other methods 

- Destination Point - VF-module instance(s) that will take a traffic 

- A&AI delivers an information about existing VNF instances, VF-Modules instances, V-Servers etc. 

- Policy delivers an information about traffic distribution policies 

- Algorithm delivers an anchor point and list of destinations for distribution 

 
HAS 

 

OOF A&AI 

Policy 

vnf-list, vf-instance-list 
v-server, ip-addresses 

traffic distribution 
policies 

SO 

anchor point 

destinations list APPC 

A&AI 

Ansible 
Server 

DT LCM Req 

DT Check 
LCM Req 



  

Dynamic selection of vf-module instance with OOF (El Alto) 

1. OOF / HAS algorithm used 
a) Selection of vf-module Instance for 

service/vnf 
b) Selection is policy based 

• Filtering by AAI attributes 
• Relation i.e. by region 
• Exclusion/Inclusion 

c) Exclusion/Inclusion 

2. OOF selects vf-module 
candidates for requested 
demands 
a) We can find vf-module that satisfies 

specified criteria 
b) We can find related vf-modules 

3. Usefull in workflows when 
we do not know the exact   
vf-module to perform action 
on 



  

vFW In-Place Upgrade & Traffic Distribution Workflow (Frankfurt) 

• Workflow and use case modified towards In-
Place Upgrade with Traffic Distribution 
- Upgrade (Pre/Post Check, Upgrade), Lock (Check, 

Lock, Unlock) and Traffic Distribution LCMs 

- For Guilin planned further modifications 

• Improvements in APPC for VNFC scope 
reconfiguration with Ansible 
- APPC is able to auto generate NodeList section for 

vnf, vf-module or vnfc scope 

- Requires oam Ips configured in AAI (vnf and vnfc-lvl) 

- NodeList is generated from payload/request-
parameters section 

- Will evolve into generic vnfc and vf-module identifiers 
support for APPC LCM actions for any kind of protocol 



  

Current SO Building Blocks Supported Use Cases  

SO Building Block implementation: 

The SO building blocks are a set of database-driven, configurable and generic process steps to be leveraged 

through several actions defined as 'Macro' flows. For each of the macro flows, there are a set of actions to the 

orchestration services and various type of resources orchestrated by ONAP.  

Supported Services & Resource types  

These resource types are essentially the ones defined in the model - through the 

SDC framework. SO orchestrates service, vnf and vfModule building block for 

assign, create configure and activate.  

 

There is a lack of vnfc orchestration in ONAP that is required in order to support 

complex lifecycle management for various vnf use case.  

  

 Services   

 VNF (Virtual Network Function) 

 VF modules (i.e. a deployment unit, such as a HEAT stack) 

 VNFC  (virtual network function component) 

Service 

VNF 

VF Module 

VNFC 

VNFC 

VNFC 



  

SO MACRO Generic Building Block Orchestration (Frankfurt)  

Controller BB (BPMN + Java) 

Build Controller Context from inputs 
- Scope 
- Action 
- Actor 

CDS Path APPC/SDNC Paths 

LCM APIs CDS API 

Simplified logical flow 

Scope 
- service 
- pnf 
- vnf 
- vfModule 
- vnfc (to be added) 

 
NOTE: Scope drives  input 
action identifiers to controller 
LCM execution such as ssid, vnf-
id, vf-module-id, vnfc-name, 
etc.. 



  

APPC/CDT Template Definition for VNFC (Plan) 

• Requires vnfc info in AAI 

• ne_id – APPC resolves from AAI -> VNFC -
> vnfc-name 

• fixed_ip_address – APPC resolves from AAI 
-> VNFC -> vnfc-ipaddress-v4-oam-vip 

• action-identifiers: vnf-id 

• filtering by request-parameters: vf-module-
id, vnfc-type.  

• SO determines vf-module-id and vnfc-type. 
Most likely vnf-type can come from the input 

• Can be applied for: 
- UC #1 

- UC #2  

- UC #3 

- UC #4 

request-para 

request-para 

The best option that allows to configure concrete VM for vnf, vf-module and vnfc scope in APPC 



  

vFW / vDNS Build & Replace Upgrade Workflow & UC (Plan) 

• Possible change of the use case from vFW to vDNS 

• Change of the Instantiation methods to Macro Flow 
with CDS 

• Integration with vDNS ScaleOut/In use Case 
- Depends on the plans of Scaling team for implementation 

of ScaleIn scenario 

- Without ScaleIn only ScaleOut with new software version  

• LCM actions execution through the CDS and APPC 
- Workflow defined in the Orchestration Flow Table in SO 

- Use of ControllerExecutionBB 

- Actions executed on VNFC level with Ansible protocol (but 
ready for NetConf) 

- Dynamic selection of vf-module instance with OOF  
• Integration with SO (probably in the ControllerExecutionBB) 

• MDSAL as a new source of data for filtering in HAS 

VNFC v1 VNFC v2 

Traffic flow 

Config 

3 

1 4 

3’ 

2 



  

PNF in-place software upgrade procedure on a single PNF instance 
without schema update 
 Scenario 1: Using direct Netconf/Yang interface with PNF 

 Scenario 3: Using Ansible protocol with EM 

 Scenario 4: Using Netconf/Yang interface with EM  

 

Service level schema update is  
proposed as “Enable service level  
LCM operations” 
 only “PNF software version  

onboarding” is committed 

E2E PNF Software Upgrade (Frankfurt) 

SDC 

SO 

Operator 

External Controller (e.g. EM) 

A&AI 

(1) 

Blueprint processor 

Vendor 

VID 

SDNC 

Netconf-
executor 

(2) 

(3a) (3c) 

(3b) 

(4) SFTP 

CDS Self-service API 

Ansible Server 

LCM API 

APPC Client CDS Client 

Building Block 

API Handler (LCM API) 

SLI (DG) 

SB Adaptor (Ansible) 

Netconf/Yang 

PNF 

Netconf/Yang 

Ansible 

(4) 

Scenario 1 

Scenario 3 

Scenario 4 

Restconf-
executor 

ODL 

Only the 1st part of 

the E2E solution 

The 2nd part of the 

E2E solution 

https://wiki.onap.org/pages/viewpage.action?pageId=64007309
https://wiki.onap.org/pages/viewpage.action?pageId=64007309
https://wiki.onap.org/pages/viewpage.action?pageId=64007309
https://wiki.onap.org/pages/viewpage.action?pageId=64007357
https://wiki.onap.org/pages/viewpage.action?pageId=64007357
https://wiki.onap.org/pages/viewpage.action?pageId=64008675
https://wiki.onap.org/pages/viewpage.action?pageId=64008675
https://wiki.onap.org/pages/viewpage.action?pageId=64008675
https://wiki.onap.org/pages/viewpage.action?pageId=64008675
https://wiki.onap.org/display/DW/Enable+Service+Level+LCM+Operations
https://wiki.onap.org/display/DW/Enable+Service+Level+LCM+Operations
https://wiki.onap.org/display/DW/Enable+Service+Level+LCM+Operations


  

Update one PNF instance without schema update  
(Using direct NetConf/Yang interface with PNF - Frankfurt) 

Pre-condition 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SO  Workflow 

Repeat per SO action 

Vendor Operator 
SFTP SDC CDS 

Onboard package & 
Create resource A 

Upload  blueprint scripts 
Add repository folder URL 

and userID / password 

Create Service A with resource A 

SDC catalog SDNC AAI SO 

Distribution 

Service Instantiation (PnP) 

PNF VID 

Service instance object A 
service-instance-id 1 
model-invariant-id 1 
model-version-id 1 

 

PNF-instance-id 1 
model-name A 
model-invariant-id 1 
model-version-id 1 
software-version 1.0 

Design Time 
 

Run Time 
 

PNF instance ID 
actionIdentifer { 
    actionName 
    blueprintName 
    blueprintVersion} 

Associate additional artifacts (e.g. CBA) with 
the resource A  

Selected workflow, Target 

software version, and 

PNF instance ID 

Netconf / Yang 

Service instance object A 
service-instance-id 1 
model-invariant-id 1 
model-version-id 1 

 

PNF-instance-id 1 
model-name A 
model-invariant-id 1 
model-version-id 1 
software-version 2.0 

software Image  

blueprint-name / 

version are added 

into the PNF resource 

model as proprieties 

Software version 

is updated 

Updates 

Retrieve image 

PNF Package X 

Descriptor 

Artifacts 
Service template 

Name A 
invariantUUID 1 

UUID 1 
Revision 1.0 

Resource Instance 
name M 
 Resource Name A 

invariantUUID 1 
UUID 1 
swVersion 1.0 

Artifacts 



  

Upgrade with modification of the schema 

• New VSP -> new/updated resource (PNF model or VF-Model) 
- Modification of Service Model required to provision new blueprints/artifacts 

• Today we cannot move existing service instances to the new service model 
- We can only create new service instance for new service model 

- Changing model of existing service instance would not mean only changes in MariaDB and AAI 

- Dedicated procedures required for specific schema transitions (1.0 ->2.0  !=  2.0->3.0) 

• Schema update based on the Service Model 
- Build and replace Pattern to be used for CNFs and VNFs 

• For CNFs controlled by K8s, for VNFs by ONAP controller 

- Data migration and reconfiguration for VNF / PNF 

- Workflow needs to operate on cross-service scope 

- We need cross-service LCM operations 

• For CNFs not required since MultiCloud/K8s will provision that  

- OOF may help to coordinate the upgrade process 



  

1. A vendor shall provide  
o a new VNF/PNF package with updated artifacts, and  

o the new VNF/ PNF software image to the operator.  

2. At receiving of the new package, the operator shall  
o onboard the new package and create a new resource template or update the 

existing resource template 

o update the existing service template with the new or updated resource 
template 

o distribute the updated service template to run time.   

3. At run time, the operator shall, based on the updated 
service template, 
o upgrade a service instance and its resource instances, and 

o update the run time catalog with the updated service/resource template  

Service level Schema update procedure  

Operator 

Portal VID 

SDC SO 

SDNC 
(blueprint processor) 

PNF 

 1  

 2   3  

 4  

 5  

 6  

AAI 

Vendor 

SFTP 

CDS 

distribution 

Schema upgrade must be handled at service level for both design time and run time 

Then ONAP can make use of the new artifacts provided by the vendors, after schema update 



  

Pre-condition 
 
 
 
 
 
 
 
 
 
 
 
 
 

Service level LCM operation on PNF example  
(with the same resource name - Guilin) 

Vendor Operator 
SFTP SDC CDS 

Onboard package & 
Create resource A 

Upload  blueprint scripts 
and parameters 

Associate additional artifacts (e.g. CBA) with 
the resource A  

Create Service A with one resource instance 
Add additional service artifacts (e.g. wf) 

SDC catalog SDNC AAI SO 

Distribution 

Service Instantiation (PnP) 

PNF VID 

Service instance object A 
service-instance-id 1 
model-invariant-id 1 

model-version-id 1 
 

PNF-instance-id 1 
model-invariant-id 1 
model-version-id 1 
software-version 1.0 

Onboard package &  
update resource A 

Upload/update  blueprint 
scripts and parameters 

Update additional artifacts (e.g. CBA) with the 
resource A 

Update Service template by replacing the 
existing resource A with a new revision 
Update additional service artifacts (e.g. wf) 

Distribution 

Service Level LCM operation 

Service instance object A 
service-instance-id 1 
model-invariant-id 1 

model-version-id 2 
 

PNF-instance-id 1  
model-invariant-id 1 
model-version-id 3 
software-version 2.0 

Design Time 
 

Run Time 
 

SO workflow execution on service instance 

Instance ID & actionIdentifer  Netconf / Yang 

Updates  

Retrieve image 

New schema with 

updated software version 

and artifacts 

Step 1: provide new image 
and new package to the 
operator 

Step 1: provide new image 
and new package to the 
operator 

Step 5: execute the 
workflow on the service 
instance 

Software Image 

PNF Package X 

Descriptor 

Artifacts 

PNF Package Y 

Descriptor 

Artifacts 

Service template 
Name A 

invariantUUID 1 
UUID 1 

Revision 1.0 

Resource Instance 
name M 
 Resource Name A 

invariantUUID 1 
UUID 1 
swVersion 1.0 

Artifacts 

Service template 
Name A 

invariantUUID 1 
UUID 2 

Revision 2.0 

Resource Instance 
name M 
 Resource Name A 

invariantUUID 1 
UUID 3 
swVersion 2.0 

Artifacts 

Step 2: Update the resource 
template using the new 
onboarding package 

Step 3: update service 
template with the new 
revision of the same 
resource template Step 6: update the 

management service 
instance object 

Step 4: select an existing service 
instance, a target service template 
revision and a service level 
upgrade workflow 



  

• Design time 
- indicates which resource instance 

shall be upgraded 

- indicates which sub-workflow / 
building blocks shall be used at  
resource level 

• Run time 
- After service level upgrade, all 

resource instances must be 
upgraded to the revision defined in 
the service template 

Service level workflow on PNF Example 

Upgrade Workflow example of one service instance 

Manual process 

OK 

OK 

NoK 
NoK 

May trigger a separated service level roll 

back procedure if an error is found during 

the execution of a service upgrade flow 

OK 

service level Upgrade 
 

 

 

 Service level update AAI 

resource level activateNESw workflow on 
each upgrading resource instances 

Workflow pre-load  
 

 
Creating resource instance upgrade list by 

comparing the service templates 

service level post-check 

 

 

 

 

Resource level post-check workflow on 
each upgraded resource instances 

Service level post-check workflow on 
all resource instances 

service level preparation 

 

 

 

 

Resource level preparation workflow on 
each upgrading resource instances 

Service level health check on all resource 
instances within the service 

NoK 

NoK 

Update the model-invariant-id and the 

model-version-id of the service template 

in the A&AI entry 

PNF resource level 

preparation workflow 

preCheck 

downloadNESw 

PNF resource level 

activateNESw workflow 

activateNESw 

updateAAI 
Update the software version, model-

invariant-id and the model-version-id of 

the resource template in the A&AI entry 

PNF resource level 

postCheck workflow 

postCheck 



  

Change Management Scheduling in ONAP and extensions  

• As of Frankfurt  
- Automated schedule discovery with conflict avoidance  

- OOF for schedule discovery/optimization algorithms 
• use of MiniZinc / model-driven approach 

• static composition of constraints  

- Constraints supported: conflict, concurrency  

• Guilin and beyond  
- Support wide variety of constraints – service impact, timezone, 

grouping based on attributes  

- Policy-enabled discovery – store constraints in policy engine  

- Enable modular and dynamic composition of constraints – i.e., 
user specified selection of constraints for each schedule 
discovery  

- Scale up schedule discovery to large number of network elements 
(especially for network edge – hundreds of thousands of nodes)  

CMSO 

SO 

TICKETS POLICIES TOPOLOGY 

APPC/CDS 



  

Integration of CNFs as enabler for Change Management 

• CNFs/k8s have clear advantage over VNFs 
- Faster Instantiation 
- Scaling enabled 
- Distribution of Traffic 
- Upgrading and Release Management 

• MutliCloud-K8s Project  
- introduces CNF Deployment & Configuration                                                            

Capabilities into ONAP 
- CNF/K8s Management Integrated with ONAP MultiCloud 
- Tested for deployment of vFW CNFs/VNFs with VNF API 

• vFW CNF Upgrade Use Case 
- Available Scaling and Upgrade mechanisms in K8s 
- Platform provided Traffic Distribution mechanisms  
- Easier implementation of Build & Replace Upgrade Scenario for CNFs but could work also 

for VNFs (thanks to virtlet in K8s) 
- Acceleration of change management operations 
- Needed integration with CDS to improve service instantiation and its upgrade 



  

Use of CDS for CNF Instantiation with K8S Plugin (Frankfurt) 

• Utilization of SO Macro workflow 

• CDS used for provisioning of input parameters for instantiation 

• CDS uploads RB profile as a part of resource assignment workflow 

• Service Design: Many Helm Charts in one CSAR 
- Decomposition into many VF-modules under one VNF 

• MutliCloud-K8s Enhancements 
- Change of identifiers used to mapping between Helm Chart and vf-module 

- Simplified creation of vf-module with helm chart 

• Parameters from User Directives moved to SDNC Directives 

• Implemented default RB Profile so it is no longer mandatory resource for RB instantiation 

• K8splugin accepts input time parameters in time of instantiation 

More about integration of CDS with MulticloudK8s: Today at 2 PM -> Terrace 2A 


