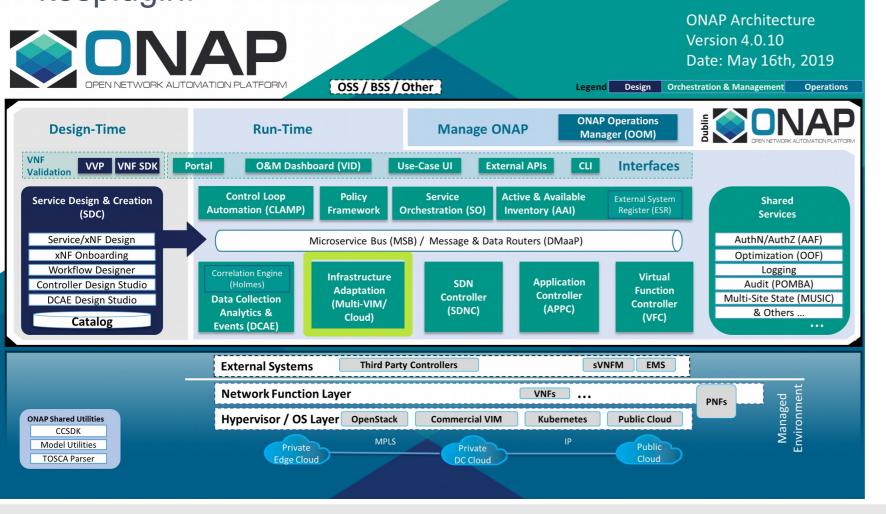


CDS Integration with K8S workloads


Konrad Bańka (Samsung) Łukasz Rajewski (Orange)

14.01.2020

- Introduction
- CNF workflow in El Alto
- Changes for Frankfurt: CDS integration for CNFs
- Future Plans/Possibilities (for CNFs/vFW use-case)
- vFW use-case
- Discussion

- Introduction
- CNF workflow in El Alto
- Changes for Frankfurt: CDS integration for CNFs
- Future Plans/Possibilities (for CNFs/vFW use-case)
- vFW use-case
- Discussion

For CNFs lifecycle operations, we're using Multicloud/k8s project with its main part – k8splugin.

K8s Plugin Role

- Upload of CNF definition
 Helm Chart
- Customization of deployment
- Instantiation of CNF
- Configuration of CNF (Day 2 Configuration)
- Configuration of connectivity ONAP - K8S

Resource Bundle (RB)

- Resource Bundle is k8splugin's object corresponding to vf-module resource. Resource Bundle contains Helm Chart as a definition of CNF.
- Resource Bundle is provided as "CLOUD_TECHNOLOGY_SPECIFIC_ARTIFACT" part of CSAR and is distributed automatically from SDC. It comes with dummy heat file that creates vf-module

RB Profile

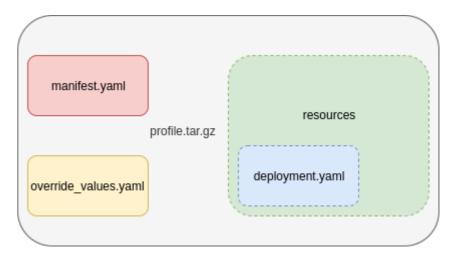
- *Profile* is a Day 0 configuration object containing override data for Helm Chart. It allows customization of *Resource Bundle* with *Profile* content at the time of vf-module instantiation.

RB Instantiation

 In order to launch CNF instance, user needs to provide in VID both Resource Bundle and selected Profile to be used for customization.

Example of RB Profile's manifest

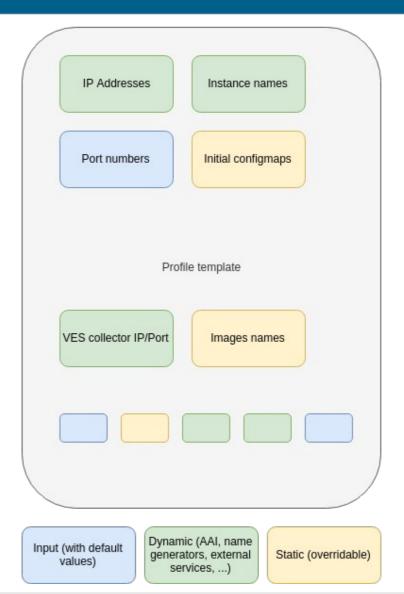
version: v1


type:

values: "override_values.yaml"

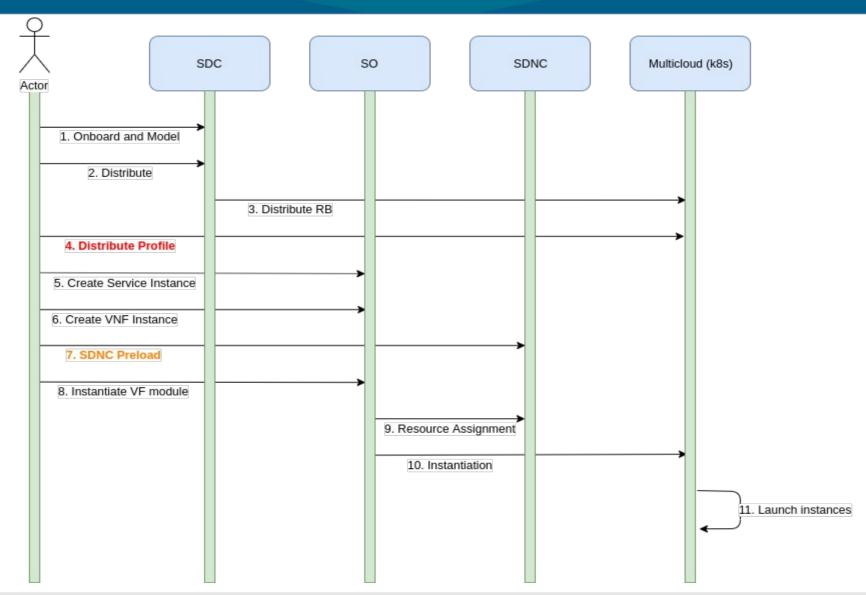
configresource:

- filepath: resources/deployment.yaml chartpath: templates/deployment.yaml


Example of profile's structure

Example overrides

```
replicaCount: 1
image:
 repository: virtlet.cloud/ubuntu/16.04
 tag: latest
 pullPolicy: IfNotPresent
resources:
 limits:
  memory: 4Gi
service:
 type: NodePort
 ports:
  port: 2831
  nodePort: 30831
vpg name 0: test-vnf-vpg
vnf name: test-vnf
dcae collector ip: 10.0.4.1
dcae_collector_port: 8080
demo_artifacts_version: 1.5.0
int_private1_net_id: unprotected-net
onap_private_net_id: onap-private-net
vpg_int_private1_ip_0: 192.168.10.2
vpg_onap_private_ip_0: 10.10.100.2
vfw int private1 ip 0: 192.168.10.3
vsn_int_private2_ip_0: 192.168.20.3
int private2 net cidr: 192.168.20.0/24
```



- Introduction
- CNF workflow in El Alto
- Changes for Frankfurt: CDS integration for CNFs
- Future Plans/Possibilities (for CNFs/vFW use-case)
- vFW use-case
- Discussion

CNF workflow in El Alto

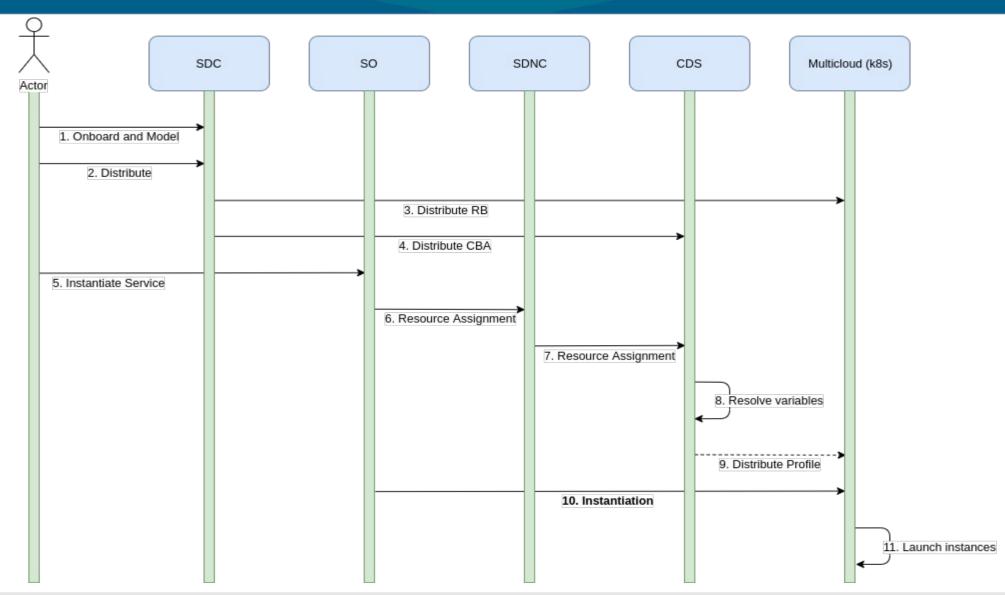
- Service instantiated with a'la carte SO workflow and VNF API
- Manual k8s Resource Bundle's Profile upload
- SDNC preload required
 - Lack of SDNC Directives as dummy heat has no input parameters
 - User Directives from additional file in instantiation from VID.
- User Directives needed: RB Name, RB Version, K8S Namespace and RB Profile Name
- Resource Bundle's name and version require their manual resolution

CNF workflow in El Alto

- Introduction
- CNF workflow in El Alto
- Changes for Frankfurt: CDS integration for CNFs
- Future Plans/Possibilities (for CNFs/vFW use-case)
- vFW use-case
- Discussion

REQ-182, INT-1184 - Wiki: Integration with CDS

- Utilization of SO Macro workflow
 - Benefits from CDS and opens new opportunities for CNFs in ONAP in the future
 - Reduces instantiation steps from network operator's perspective
- Resource Bundle names / version based on *vf-module-model-invariant-id* / *vf-module-version-id*
 - Identifiers from VF module model, used to create RB Definition when model is distributed
 - RB Name and Version are not required in the SO instantiation flow, as they are being always sent by SO to multicloud in time of vf-module instantiation
- Parameters from User Directives moved to SDNC Directives
 - When VNF API is used only one parameter is required: k8s-rb-profile-name
 - In Macro flow with CDS additionally k8s-rb-profile-namespace parameter can be used


CDS used for provisioning of variables

- Use of CDS allows user to simplify instantiation process by discarding the need of SDNC preload, but still giving possibility to provide per-instance overrides
- Dynamic variables provisioning may simplify future LCM operations implemented for CNFs

CDS uploads RB profile as a part of resource assignment workflow

- Profile can be uploaded for each vf-module
- Profiles may be embedded in the CBA archive
- Depending on need, profile can be uploaded by CDS if specifically designed in CBA model
- Profile in CDS can be templated thus allowing for dynamic content defined there
- Exemplary implementation for vFW CNF Use Case as additional workflow step in Resource Assignment phase.

- Many Helm Charts in one CSAR and VNF
 - It gives more design options. We can decouple Helm Charts into many vf-modules in order to manage them independently in ONAP
 - Utilized in vFW CNF Use Case to make vFW CNF CDS CBA similar to standard vFW CBA
- Implemented default profile so it is no longer mandatory resource for RB instantiation
 - If application doesn't demand it, it is possible to totally omit profile to instantiate CNF thus simplify process for simple CNFs
 - Combined with previous feature, it enables providing more static parameters (like DCAE IP/port) within profile with dynamic ones transferred with instantiation REST call
- K8s Plugin accepts input time parameters in time of instantiation
 - Instantiation time parameters allow for providing more "dynamic" parameters aside from profile thus reducing total amount of created profiles and their footprint
 - It eliminates the need of creation of custom profiles for many cases

- Introduction
- CNF workflow in El Alto
- Changes for Frankfurt: CDS integration for CNFs
- Future Plans/Possibilities (for CNFs/vFW use-case)
- vFW use-case
- Discussion

Future Plans/Possibilities (for CNFs/vFW use-case)

- New Scaling Capability in K8s Plugin → Still to be designed
 - Will expose scaling functionality for selected resources created after instantiation of RB Definition: Deployment and Stateful Set
 - Dedicated API in Multicloud K8S
 - Integration with ScaleOut and ScaleIn generic Workflows
 - ScaleOut for VNFs creates always new heat stack vf-module instance
 - ScaleOut of RB Instance (at least today) would result only in change of available vservers under the same vf-module → we should keep Scaling fasion the same for VNFs and CNFs
 - Requires proper alignment of vf-module's role for VNFs and CNFs
 - May result with specific requirements given on Helm Charts, i.e. only one Deployment or Stateful Set in RB Definition → Otherwise ONAP would have to select K8s resource for scaling
 - Requires proper design of helm chart in order to deliver input parameters for new pods in scaled Deployment
 - Update of information about generic-vnf, vf-module, vserver in AAI

Future Plans/Possibilities (for CNFs/vFW use-case)

- New Upgrade Capability in K8s Plugin → Still to be designed
 - Upgrade of existing RB Definition Instance base on new RB Profile or new RB Definition
 - Upgrade should works similarly to Helm Chart Upgrade
 - Existing RB Instance will be moved to new RB Definition
 - With RB Profile we can modify the RB Definition so with appropriate profile we can achieve almost full upgrade like with new RB Definition (right balance: RB Definition vs RB Profile)
- vFW CNF (Build and Replace) Upgrade with new definition or profile
 - (?) Upgrade of existing VSP with new CSAR with new Helm Packages through SDC and creation of new vf-model(s)
 - Upload of new vFW CNF CBA with new RB Profile(s) valid with new VSP
 - Modification of existing service model by replacing new vf-models with new versions
 - With distribution of service model new RB Definition(s) appear in K8s Plugin

Future Plans/Possibilities (for CNFs/vFW use-case)

- vFW CNF Upgrade with new definition (cd..)
 - Creation of new service instance but with reference to existing one service
 - CDS resolves parameters for instantiation i.e. with different profile name or different images
 - Inputs can be initially taken from those used for instantiation of referenced one
 - CDS Additionally resolves names of existing RB Instances they are stored in AAI, in vf-module object
 - New Service instance is created
 - K8s Plugin Instantiation Broker receives name of existing RB Instances and calls
 Upgrade controller instead of creating new RB Instance old RB Instance will disappear
 - As a result new generic VNF and new VF-modules are created
 - Old Service Instance is deleted what would not impact any resources on K8s
 - Old VF-Modules would refer to already non-existing RB Instances and can be easily removed

- Introduction
- CNF workflow in El Alto
- Changes for Frankfurt: CDS integration for CNFs
- Future Plans/Possibilities (for CNFs/vFW use-case)
- vFW use-case
- Discussion

vFW use-case

Use-case located in Demo → heat/vFW_CNF_CDS

[demo.git] / heat / vFW_CNF_CDS / templates /

```
drwxr-xr-x
                24 .gitignore blob | history | raw
- FW- F-- F--
               266 Makefile
- FW - F - - F - -
                                   blob | history | raw
                67 README.txt blob | history | raw
- FW- F-- F--
drwxr-xr-x

    base

                                   tree | history
-rw-r--r 15035 cba-dd.json blob | history | raw
drwxr-xr-x
                 - cba
                                   tree | history
drwxr-xr-x
                 - helm
                                   tree | history
```


- Introduction
- CNF workflow in El Alto
- Changes for Frankfurt: CDS integration for CNFs
- Future Plans/Possibilities (for CNFs/vFW use-case)
- vFW use-case
- Discussion

Thank you