
Issues with OPNFV Release
Process

Conflict between objectives

› OPNFV has two objectives:

› Develop reference implementations

› Provide timely feedback to upstream communities

› These objectives are in conflict

› Stable or latest?

› Reference implementation depends on stable releases from upstream

› Timely feedback implies working on latest code

› Release artifacts?

› Reference implementation implies stable release artifacts consumable by end-user

› Timely feedback implies patches and JIRA tickets for upstream components and no
need for release artifacts.

Installer focused

› Three years ago, most projects were part of a “scenario”:

› Installer

› Feature integrated with installer

› Test framework integrated with installer

› Today, only a small number of projects are part of a scenario, but release
process is still focused on this configuration

› Low visibility of standalone projects not part of a scenario

› 30% - 40% of release cycle dedicated to:

› Installer integration with OpenStack

› Installer stabilization

Project level release planning is undefined

› No requirements on project level release plans

› This means that objectives and deliverables are unclear

› Very little accountability for projects, since objectives and deliverables are
undefined, especially if they are a standalone project not tied to a scenario

› No formal mechanism to drive common, OPNFV-wide requirements to projects,
e.g.,

› Use of common upstream components

› Python2 ⇒ Python3 transition

› Container usage

