
September 26, 2019

Allan Clarke

Model-to-Model 
Transforming with 
ODL/plastic

© 2017 LUMINA NETWORKS, INC.



© 2018 LUMINA NETWORKS, INC. 2



Why are you here?

• First public disclosure of intent to upstream Plastic* into ODL
• Give an understanding of what this feature is
• Show kinds of problems it can help solve
• Want to get enthusiasm for adoption

* Brand new name (internal name was Cartographer)

© 2017 LUMINA NETWORKS, INC. 3



What is the mapping problem?

What is a mapping problem?
• Occurs in internals of a system behind endpoints
• ODL context – moving from northbound to southbound 
representations

• Sometimes need to trivially convert data representation 
• JSON, XML, YML, other parse-able formats

• Sometimes need to change abstractions (1:1, N:1, N:N)
• Morph one model into completely different model
• Morph N models into one model

© 2017 LUMINA NETWORKS, INC. 4



Available Solutions

What solutions are there today?
• Venerable XML/XSD/XSLT
• Apache Velocity
• DSLs
• Jolt
• Ad hoc programming
• Others

© 2017 LUMINA NETWORKS, INC. 5



Everything has a tradeoff…

What are advantages and disadvantages?
• Can be very comfortable if you know underlying language
• Can be comforting to programmers
• Need to learn another language regardless of mapping 
complexity

• Imperative representation of conversions (hiding schemas in 
code)

© 2017 LUMINA NETWORKS, INC. 6



Why ODL/plastic?

ODL/plastic Advantages
• Pay-as-you-go for complexity (field deployable changes)
• Declarative representations are emphasized (clear schemas)
• Translation-by-intent (say what you want, not how to do it)
• Deeper levels of abstraction to help keep custom logic 
schema-independence

• Can specify arbitrary morphing via plug-ins in JVM language
• Understands breaking large mapping problems up (both time 
and space) into small chunks 

© 2017 LUMINA NETWORKS, INC. 7



Justification

Solves problems like…
• Schema changes for device configurations across releases
• No more hard-wired dependency on vendor libraries
• In-the-field updating to support multiple versions of devices
• Light weight specifications avoid religiosity around “DRY"

© 2017 LUMINA NETWORKS, INC. 8



Should you use ODL/plastic?

• Probably no, if your mapping problem rarely changes
• No, if you have abundant access to inexpensive programmer 
time

• No, if you don't care how hard it is to understand your 
translations

• No, if you are not particularly sensitive to regression breakages
• Probably no, if you have sub-millisecond throughput 
requirements

© 2017 LUMINA NETWORKS, INC. 9



Plastic Mapping Specification
• Input schema

• Exemplar-based specification (XML/JSON/…)
• Variables defining important values

• Output schema
• Exemplar-based specification (XML/JSON/…)
• Variables defining bound values that are substituted

• Input payload
• Same format of input schema
• Partial match required against input schema

• Invoke
• Plastic.translate(“ELN”, “1.0”, “JSON”, “AA”, “1.1”, “XML”)

• Schemas is an arbitrary file system hierarchy

© 2017 LUMINA NETWORKS, INC. 10



Examples
Example-1: no coding - array expansion

Example-2: least schema-dependent coding using morpher “plug-in”

Example-3: highly dependent coding using classifier “plug-in”

Translation pipeline showing how all “plug-in”s relate to the flow

© 2017 LUMINA NETWORKS, INC. 11

https://docs.google.com/document/d/1PvlZQ-X3upCM9fG8b-PhL-YqiGUHnU7Q/edit


Example-2: schema-independent coding
• Via simplest possible “morpher” plug-in

• Shows manipulation AFTER variable binding

• Below is written in Java-style, not idiomatic Groovy

class MyMorpher
{

def tweakValues(Map inputs, Map outputs)
{

outputs[‘ENDPOINT'] = inputs[‘ADDR-IN'] + ”:" + inputs[‘PORT-IN']
}

}

© 2017 LUMINA NETWORKS, INC. 12



Example-3: schema-dependent coding
• Via simplest possible “classifier” plug-in

• Shows just-in-time schema name resolution

• Payload is parsed JSON (ie, arrays/maps)

• Below is written in Java-style, not idiomatic Groovy

class MyClassifier extends SimpleClassifier
{

String classify(Object parsedPayload) // payload is parsed JSON
{

if (parsedPayload.astuff)
return “schema-A”

else
return “schema-B”

}
}

© 2017 LUMINA NETWORKS, INC. 13



Plastic Pipeline

© 2018 LUMINA NETWORKS, INC. 14

Classify

Payload

Morph Morph Emit(Parse) (Bind)

Normalized

1. Payload parsed

2. Values bound
3. Output serializable



More Good Stuff
• Default values (in schema, passed in, or ad hoc logic)
• Multiple morphers
• Run-time reload of schemas and translation logic
• Multithreaded “batch” processing
• Simple synchronous API
• Command line runner for quick development
• Tutorial

© 2018 LUMINA NETWORKS, INC. 15



Takeaways

• General-purpose facility usable in many contexts
• Declaratively manage schema changes
• Sometimes no coding required
• Insulate your code from changes

© 2017 LUMINA NETWORKS, INC. 16



Open Questions

Thanks!
aclarke@luminanetworks.com

© 2017 LUMINA NETWORKS, INC. 17


