OPEN
DAYLIGHT netuwo

Micro-services friendly nimble
distribution and extensions

ODL Magnesium DDF, Antwerp - September 2019

Luis Gomez & Tejas Nevrekar, Lumina
Networks

Agenda

e Background - The Why
e Our approach

* Progress

* Goals for Magnesium
e Execution Plan

Background - Microservices

* Application definitions becoming static, less use of adding/removing application
functions at runtime

* New “services” come up in new containers and advertise to a service registry

* Consumers can use the registry to interact with such new services

* Old services just retired by stopping the containers

* Given that containers mostly run on clouds that spend SSS per usage, need optimal
images, every second counts (Ref: Appendix)

Background - ODL History

* As ODL starts getting into microservice, containerized deployments, the ask to make
ODL nimble
* Reduce memory, CPU footprint
* Reduce startup time
* Optimize key code paths

* Alternatives to solve this problem:
* ODL simple - https://github.com/vorburger/opendaylight-simple
* Michael already did upstream some work and the rest can be upstreamed any time.
* Lighty.io - https://github.com/PantheonTechnologies/lighty-core
* Solves these issues already, but not upstreamed in ODL and no public plan to do this.

https://github.com/vorburger/opendaylight-simple
https://github.com/PantheonTechnologies/lighty-core

Our Approach

* Our controller distribution is very close to the upstream distribution

* Asthe scale requirements are increasing, we feel the need to have such non-karaf
distribution in ODL upstream

* Itis not possible for us to use a 3rd party github project as the basis of our ODL
distribution

* We need the changes for distribution to be in ODL upstream

* That leaves ODL simple as the only option for us to align with

Progress made by odl-simple upto Neon

e Upstream changes:
* Infrautils - annotation processing to enable guice wiring
* Moved from blueprint to javax.annotations - openflowplugin, ovsdb, genius

github repo - https://github.com/vorburger/opendaylight-simple contains Wiring &
Module classes

* aaa, controller, genius, infrautils, mdsal, netvirt, openflowplugin, ovsdb, restconf,
serviceutils

* Wiring - Does the stitching of required external configuration as present in the
blueprint.xml

* Module - Guice implementation to expose the required services

https://github.com/vorburger/opendaylight-simple

Goals (for Magnesium Release)

* Expand the scope of odl-simple to cover “Managed” and stable “Self-Managed”
projects, for example:
* Netconf, BGPCEP, LISP, etc
* JSON-RPC, TransportPCE

* Build smaller micro-distributions that contain smaller sets of modules suitable for
micro-service deployments:
* openflow simple: mdsal, controller, restconf, openflowplugin
* netconf simple: mdsal, controller, restconf, netconf
* bgpcep simple: mdsal, controller, restconf, bgpcep
* netvirt simple: mdsal, controller, restconf, openflowplugin, ovsdb, genius, netvirt

Work - Development, Validation

* Add code in “Managed” and stable “Self-Managed” projects
* This code has no impact in the project or the current Karaf/OSGI distribution
* We will use Unit Tests to validate this code
* Add code for generating the micro-distributions
* This code can be in the project repos or centralized
* We can use exiting System Test (CSIT) to validate the new micro-distribution, a
weekly distribution test would be enough
* Perform Benchmarking tests to compare with existing Karaf/OSGI distribution
* Startup time
« CPU
* Memory footprint
* Revisit Backlog -
https://github.com/vorburger/opendaylight-simple/blob/master/TODO.md

https://github.com/vorburger/opendaylight-simple/blob/master/TODO.md

Execution Plan

* Move odl-simple github code in OpenDaylight
* Michael Vorburger is on board with this
* New Self-Managed project in Magnesium

* Make infra changes to deploy and test micro-distributions
* Modify existing CSIT jobs to deploy micro-distributions should be straight forward

e Start generating & testing micro-distributions
* As mentioned this will require few patches in existing ODL projects

Backup

OLD Simple Runtime statistics

ODL-Neon-SR3

Average

ODI-Simple-Neon-GA

Average

Clean Start
Time
0:07:13
0:12:35
0:13:52
0:14:57

Start Time
1:44:16
1:46:02
1:46:35
1:47:29

Clean Init
Time
0:08:47
0:13:19
0:14:19
0:15:41

Init Time
1:44:28
1:46:15
1:46:46
1:47:40

Clean Time
duration

0:01:34
0:00:44
0:00:27
0:00:44
0:00:52

Net Time
Duration

0:00:12
0:00:13
0:00:11
0:00:11
0:00:12

Next Start
Time
0:16:39
0:17:36
0:18:26
0:19:34

Next Init Time
0:17:10

0:18:03
0:18:54
0:20:03

Next Time
Duration

0:00:31
0:00:27
0:00:28
0:00:29
0:00:29

—

Key Implementation Steps

Replace all exposed blueprint XMLs with
google.guice.AutowiringModule subclasses

Install required dependent modules

Expose required services using annotation for
binding by odl:type

Refer required services using the annotation

public class NetconfModule extends AutoWiringModule {

@0verride
protected void configureMore() {
LOG.info("Loading netconff");
// Gulice
install(new AnnotationsModule());
// Controller/MD-SAL
install(new InMemoryControllerModule());

@Provides
@Singleton
@GlobalWorkerGroup
EventLoopGroup getGlobalWorkerGroup() {
return NioEventLoopGroupCloseable.newInstance(0);
}

@Provides

@Singleton

@org.opendaylight.netconf.simple.NetconfClientDispatcher

NetconfClientDispatcher getNetconfClientDispatcher(

@GlobalBossGroup EventLoopGroup globalBossGroup,

@GlobalWorkerGroup EventLoopGroup globalWorkerGroup,
@GlobalTimer Timer globalTimer) {

return new NetconfClientDispatcherImpl(globalBossGroup, g

Key Implementation Steps

@Singleton
Add AutoWiring class for reading public class OpenFlowJavaWiring {
configuration or initializing
@Inject

public OpenFlowJavaWiring(ConfigReader configReader,

SwitchConnectionProviderFactory switchConnectionProviderFactory)
Read from config using ConfigReader SwitchConnectionConfig defaultSwitchConnConfig = configReader

.read("/initial/default-openflow-connection-config", SwitchC
"openflow-switch-connection-provider-default-impl");
SwitchConnectionProvider defaultSwitchConnProvider = switchConnectio
.newInstance(defaultSwitchConnConfig);

@Provides
Use Wiring in the Module @5ingleton SwitchConnectionProviderList getOpenFlowlavaWiring(OpenFlowJavaWi
| return openFlowJavaWiring.getSwitchConnectionProviderList();
}

Key Implementation Steps

@Singleton
Alternatively move most of the public class HwvtepSouthboundProvider implements Clus’
blueprint definition to Annotations in @Inject
the Code in the respective project. public HwvtepSouthboundProvider(@Reference final DataBroker

E.g. as done in OVSDB -
https://qit.opendaylight.org/gerrit/c/ovsdb/+/7

9782

public class OvsdbModule extends AutoWiringModule {
No additional explicit wiring needed ; public OvsdbModule(GuiceClassPathBinder classPathBinder) {
in simple if blueprint.xml replaced by " super(classPathBinder, "org.opendaylight.ovsdb");

annotations.

https://git.opendaylight.org/gerrit/c/ovsdb/+/79782
https://git.opendaylight.org/gerrit/c/ovsdb/+/79782

OPEN
DAYLIGHT

Thanks

