
Micro-services friendly nimble
distribution and extensions

Luis Gomez & Tejas Nevrekar, Lumina
Networks

ODL Magnesium DDF, Antwerp - September 2019

Agenda

• Background - The Why
• Our approach
• Progress
• Goals for Magnesium
• Execution Plan

Background - Microservices

• Application definitions becoming static, less use of adding/removing application
functions at runtime

• New “services” come up in new containers and advertise to a service registry
• Consumers can use the registry to interact with such new services
• Old services just retired by stopping the containers
• Given that containers mostly run on clouds that spend $$$ per usage, need optimal

images, every second counts (Ref: Appendix)

Background - ODL History

• As ODL starts getting into microservice, containerized deployments, the ask to make
ODL nimble

• Reduce memory, CPU footprint
• Reduce startup time
• Optimize key code paths

• Alternatives to solve this problem:
• ODL simple - https://github.com/vorburger/opendaylight-simple

• Michael already did upstream some work and the rest can be upstreamed any time.
• Lighty.io - https://github.com/PantheonTechnologies/lighty-core

• Solves these issues already, but not upstreamed in ODL and no public plan to do this.

https://github.com/vorburger/opendaylight-simple
https://github.com/PantheonTechnologies/lighty-core

Our Approach

• Our controller distribution is very close to the upstream distribution
• As the scale requirements are increasing, we feel the need to have such non-karaf

distribution in ODL upstream
• It is not possible for us to use a 3rd party github project as the basis of our ODL

distribution
• We need the changes for distribution to be in ODL upstream
• That leaves ODL simple as the only option for us to align with

Progress made by odl-simple upto Neon

• Upstream changes:
• Infrautils - annotation processing to enable guice wiring
• Moved from blueprint to javax.annotations - openflowplugin, ovsdb, genius

• github repo - https://github.com/vorburger/opendaylight-simple contains Wiring &
Module classes

• aaa, controller, genius, infrautils, mdsal, netvirt, openflowplugin, ovsdb, restconf,
serviceutils

• Wiring - Does the stitching of required external configuration as present in the
blueprint.xml

• Module - Guice implementation to expose the required services

https://github.com/vorburger/opendaylight-simple

Goals (for Magnesium Release)

• Expand the scope of odl-simple to cover “Managed” and stable “Self-Managed”
projects, for example:

• Netconf, BGPCEP, LISP, etc
• JSON-RPC, TransportPCE

• Build smaller micro-distributions that contain smaller sets of modules suitable for
micro-service deployments:

• openflow simple: mdsal, controller, restconf, openflowplugin
• netconf simple: mdsal, controller, restconf, netconf
• bgpcep simple: mdsal, controller, restconf, bgpcep
• netvirt simple: mdsal, controller, restconf, openflowplugin, ovsdb, genius, netvirt

Work - Development, Validation

• Add code in “Managed” and stable “Self-Managed” projects
• This code has no impact in the project or the current Karaf/OSGI distribution
• We will use Unit Tests to validate this code

• Add code for generating the micro-distributions
• This code can be in the project repos or centralized
• We can use exiting System Test (CSIT) to validate the new micro-distribution, a

weekly distribution test would be enough
• Perform Benchmarking tests to compare with existing Karaf/OSGI distribution

• Startup time
• CPU
• Memory footprint

• Revisit Backlog -
https://github.com/vorburger/opendaylight-simple/blob/master/TODO.md

https://github.com/vorburger/opendaylight-simple/blob/master/TODO.md

Execution Plan

• Move odl-simple github code in OpenDaylight
• Michael Vorburger is on board with this
• New Self-Managed project in Magnesium

• Make infra changes to deploy and test micro-distributions
• Modify existing CSIT jobs to deploy micro-distributions should be straight forward

• Start generating & testing micro-distributions
• As mentioned this will require few patches in existing ODL projects

Backup

OLD Simple Runtime statistics

Clean Start
Time

Clean Init
Time

Clean Time
duration

Next Start
Time Next Init Time

Next Time
Duration

ODL-Neon-SR3 0:07:13 0:08:47 0:01:34 0:16:39 0:17:10 0:00:31

0:12:35 0:13:19 0:00:44 0:17:36 0:18:03 0:00:27

0:13:52 0:14:19 0:00:27 0:18:26 0:18:54 0:00:28

0:14:57 0:15:41 0:00:44 0:19:34 0:20:03 0:00:29

Average 0:00:52 0:00:29

Start Time Init Time
Net Time
Duration

ODl-Simple-Neon-GA 1:44:16 1:44:28 0:00:12

1:46:02 1:46:15 0:00:13

1:46:35 1:46:46 0:00:11

1:47:29 1:47:40 0:00:11

Average 0:00:12

Key Implementation Steps

1. Replace all exposed blueprint XMLs with
google.guice.AutowiringModule subclasses

2. Install required dependent modules

3. Expose required services using annotation for
binding by odl:type

4. Refer required services using the annotation

Key Implementation Steps

5. Add AutoWiring class for reading
configuration or initializing

6. Read from config using ConfigReader

7. Use Wiring in the Module

Key Implementation Steps

8. Alternatively move most of the
blueprint definition to Annotations in
the Code in the respective project.
E.g. as done in OVSDB -
https://git.opendaylight.org/gerrit/c/ovsdb/+/7
9782

9. No additional explicit wiring needed
in simple if blueprint.xml replaced by
annotations.

https://git.opendaylight.org/gerrit/c/ovsdb/+/79782
https://git.opendaylight.org/gerrit/c/ovsdb/+/79782

Thanks

