
Controller HA using Active-Standby Model

Ajay Lele, Lumina Networks
alele@luminanetworks.com

ODL Magnesium DDF, Antwerp. 26-27 September 2019

Agenda

• OpenDaylight HA features
• Limitations of existing HA features
• HA using Active-Standby model
• Usage considerations

High Availability is not optional

• High Availability (HA) is the ability of a system to be continuously available over
an extended period of time

• Telcom Service Providers have to abide by strict SLAs and hence place a very
high importance on HA of components in their architecture

• Being responsible for managing network elements, SDN Controller is a critical
component of any solution it is part of, and thus needs to be HA capable

HA in OpenDaylight

• At node level
• Clustering implementation allows more than one Controller node to work in tandem with each

other
• Data is logically segmented into shards, with one node getting elected as leader of every shard
• Election of leader as well as replication of data across majority of followers happens using RAFT

distributed consensus algorithm
• Cluster is tolerant to failure of [n - (n/2) - 1] nodes
• Geo-clustering feature extends HA to another geographical location. Ex: 6-node geo-cluster with

3-node (voting) at primary site and 3-node (non-voting) at DR site
• In a geo-cluster, switching of voting behavior is not automatic

• At service level
• When only one instance of service across the cluster is desired
• Clustering Singleton Service provides ability to deploy a service on multiple cluster nodes but to

have it running actively on only one node
• If node hosting the active service instance fails, another candidate node is automatically selected

to host the service

Limitations with existing HA features

• Scalability
• OpenDaylight clustered data-store (CDS) uses strict consistency model i.e. Tx can

complete only when majority of cluster nodes confirm that they have successfully
persisted the change locally

• This adds considerable overhead and results in performance degradation when Tx
rate is very high and/or size of data involved is large

• Supportability
• CDS implementation (including that of underlying RAFT algorithm) is home-grown

and barrier to entry in understanding and debugging it is high
• CDS is built on top of akka (remoting, clustering, persistence) and is affected by its

bugs and limitations. Ex: poor handling of large message sizes

Controller HA Requirements

1. Ability to detect when a controller instance fails

2. Ability to create or switch to a new controller instance

3. Ability to initialize new instance with last known controller state

4. Ability to switch NB and SB connections from failed to new instance

5. Ability to perform steps 1-4 while meeting required SLAs (ex. downtime, data loss)

6. Runtime and operational overheads (performance impact, ease-of-use) due to HA
mechanism should be reasonable

Active-Standby Model for HA

• Two Controller instances working in tandem
• One in active mode, other in standby mode
• Application is deployed on both instances
• Active instance runs the business logic and handles NB/SB interactions

• Instances communicate with each other via an external message bus
• Separate topics for different types of data
• Periodic heartbeats used for liveness check
• Config data changes propagated from active to standby instance (eventually consistent)

• In the event of failure of active instance
• Standby instance detects failure and transitions to become the new active
• NB/SB load-balancer (external) is re-configured to forward traffic to the new active instance
• Business logic on new active instance reconciles with the network state

System Components

NMS System

EMS

SB Load-Balancer

NB Load-Balancer

Message Bus

Controller
Application

 Data
Store

OpenDaylight
Platform

(YANG Tools,
MD-SAL)

RPC,
Notifica

tions

SouthBound Plugins

RESTCONF

HA Subsystem Controller
Application

 Data
Store

OpenDaylight
Platform

(YANG Tools,
MD-SAL)

RPC,
Notifica

tions

SouthBound Plugins

RESTCONF

HA Subsystem

Active Instance Standby Instance

Data Traffic

Control Traffic

Orchestrator

System States

initializing

config-sync

config-sync-done

config-sync-failed

reconciling ready

failed

deactivated

resetting

seed config provided:
- controller ID, priority
- message bus config

Controller
start

RPC
config-sync

if active not
detected

RPC activate RPC
deactivate/reset

RPC
deactivate/reset

RPC reset

RPC
deactivate/reset

config-check
RPC reconcile

or timeout

Initial Installation (1/3)

Controller 1
initializing state (role=other):
Controller boots and ends in
initializing state because there is
no seed configuration.

1

Controller 1

Orchestrator

ready state (role=active):
Controller transitions to
config-sync-done state. It detects
that active instance is not
available, changes its role to active
and moves through config-check
and reconciling to ready state.

3

Seed configuration
provided. Controller
starts sending heartbeat
messages as soon as
message bus config is
available.

2

Initial Installation (2/3)

initializing state (role=other):
Controller boots and ends in
initializing state because there is
no seed configuration.

4

Controller 2Controller 1

NMS System

ready state (role=active):
Controller sends periodic
heartbeats and config change
updates to message bus. NB/SB
connections are routed to this
instance.

Initial Installation (3/3)

config-sync-done state (role=standby):
Controller reads config data from the message
bus and moves to config-sync-done state.
Since active instance is present, it changes role
to standby and remains in this state. It monitors
the bus for periodic heartbeat messages from
active instance as well as any configuration
updates.

6

Controller 2Controller 1

NMS System

ready state (role=active):
Controller sends periodic
heartbeats and config change
updates to message bus. NB/SB
connections are routed to this
instance.

Orchestrator

Seed configuration provided.

5

Active Failover (1/3)

config-sync-done state (role=standby):
Controller monitors the bus for periodic
heartbeat messages from active instance
as well as any configuration updates.

Controller 2Controller 1

NMS System

ready state (role=active):
Controller sends periodic
heartbeats and config change
updates to message bus. NB/SB
connections are routed to this
instance.

Active Failover (2/3)

config-check/reconciling state (role=active):
Controller detects that active instance is
down/failed. It changes its role to active and
transitions to config-check and then reconciling
state.

Controller 2Controller 1

NMS System

Controller becomes
unavailable or moves to failed
state.

1
2

Active Failover (3/3)

ready state (role=active):
After reconciliation is over, Controller moves to
ready state. In this state, it sends periodic
heartbeats and config change updates to message
bus.

Controller 2Controller 1

NMS System

Controller is unavailable or in
failed state.

4

Device switchover:
If current controller role is not active
and other controller is.

3

5

NB switchover:
If current controller is not ready and
the other controller is.

Old Active Recovery

Controller 2Controller 1

NMS System

1

ready state (role=active):
Controller sends periodic
heartbeats and config change
updates to message bus. NB/SB
connections are routed to this
instance.

config-sync-done state (role=standby):
After Controller restarts or resumes operation, it
moves to config-sync-done state. Since active
instance is present, it changes role to standby
and remains in this state. It monitors the bus for
periodic heartbeat messages from active
instance as well as any configuration updates.

Manual Switchover (1/2)

Controller 2Controller 1

NMS System Orchestrator

Deactivate RPC

1

deactivated state (role=other):
Controller enters in deactivated
state and will remain in this state till
activate/reset RPC is received.

2

3

config-check/reconciling state (role=active):
Controller detects that active instance is
deactivated. It changes its role to active and
transitions to config-check and then reconciling
state.

Manual Switchover (2/2)

Controller 2Controller 1

NMS System Orchestrator

Activate RPC

7

config-sync-done state (role=standby):
After controller is activated, it moves to
config-sync-done state. Since active
instance is present, it changes role to
standby and remains in this state. It
monitors periodic heartbeat messages from
active instance as well as any configuration
updates.

8

5

ready state (role=active):
After reconciliation is over, Controller moves to
ready state. In this state, it sends periodic
heartbeats and config change updates to
message bus.

Device switchover:
If current controller role is not
active and other controller is.

4

6

NB switchover:
If current controller is not ready and
the other controller is.

NB/SB Connection Switchover

• When Controller switchover occurs, NB/SB connections should move to new active
instance

• HA Subsystem exposes RESTCONF endpoint to provide HA status (role & state info)
• This endpoint is periodically polled by NB/SB load-balancers to determine when switchover

needs to happen

• SB switchover criteria
• If current Controller role is not active, and other Controller role is active
• Switchover needs to finish before/during reconciliation stage

• NB switchover criteria
• If current Controller state is not ready, and other Controller state is ready
• Switchover happens after active instance has moved to ready state

Config State Replication
• Config state replication to standby instance happens using message bus

• Separate topic per module
• Data retention strategy configured taking into account max. instance downtime

• Active instance publishes config change updates to the bus
• Entire module data snapshot whenever any data in the module changes

• Suitable if module data is relatively small, changes are infrequent
• Periodic module data snapshot and individual module data change events

• Suitable if module data is large, changes are frequent

• Standby instance reads config change updates from bus to keep its state updated
• Last n messages for each module during config-sync to recreate current state
• New messages in config-sync-done state to keep its state updated

• Since data replication provides eventual consistency, there is possibility of data loss
• config-check state is used by Orchestrator to fetch/compare config state against

expected state and fix any discrepancies found

Areas for Further Exploration

• Scalability (large data sizes, Tx rates)

• Need for device connection to not drop during failover (ex. route injection with BGP)

• Standard mechanism to publish data change notifications to external message bus

Thanks

