
Data Validation using Commit Cohort

Deepthi V V, Lumina Networks

ODL Magnesium DDF, Antwerp - September 2019



Agenda

• Why is it required
• How does it work
• Generic framework for Apps
• Usage Considerations



Why is it required

• In OpenDaylight, structure of data is defined using YANG models

• Controller performs syntactic validation on data written to data-tree

<error-message>Error parsing input: Schema for node with name udp-only and namespace 

urn:opendaylight:netconf-node-topology does not exist at 

AbsoluteSchemaPath{path=[(urn:TBD:params:xml:ns:yang:network-topology?revision=2013-10-21)network-topology, 

(urn:TBD:params:xml:ns:yang:network-topology?revision=2013-10-21)topology, 

(urn:TBD:params:xml:ns:yang:network-topology?revision=2013-10-21)node]}</error-message>

<error-message>Error parsing input: Schema node with name fb-port-id was not found under 

(urn:TBD:params:xml:ns:yang:network-topology?revision=2013-10-21)termination-point.</error-message>



Why is it required

• Application business logic may require additional semantic validations

• Semantically invalid data may get written into data-tree

• Adds complexity to App for keeping DS contents and App state in-sync

• Semantic validation prior to data getting updated in data-tree can avoid this



Why is it required - Examples

• Data dependency validation
• Inventory model defines details of network elements (NEs), service model defines network 

services that can be created in network
• Service instance refers to elements from inventory data
• Inventory data used by service instance MUST be present
• Ten NEs are present in inventory (n1..n10)
• Service instance (s1) created which uses n1, n5
• Request received to delete n5
• If n5 is deleted, s1 should be unprovisioned and marked as in-complete
• Do not allow deletion of n5 as it is used by s1

• Validate correctness or completeness of data
• Certain fields cannot be modified

• Deny changes to config till App is ready



How does it work

• OpenDaylight data-tree write transaction follows three-phase commit protocol (3PC)



How does it work

• Using DOMDataTreeCommitCohortRegistry, a commit cohort 
(DOMDataTreeCommitCohort) can be registered for a data-tree path 
(DOMDataTreeIdentifier)

• The registered commit cohort will participate in 3PC involving data-tree modifications at 
given path

• Commit cohort can validate data-tree modifications, with option of rejecting the supplied 
modification

• Rejection is signalled by throwing DataValidationFailedException from 
implemented canCommit() method

• Since this works at Tx level, it is agnostic to how the modified was triggered (RESTCONF or 
Java API)



Generic framework for Apps

• Makes it easy for Apps to perform semantic validations

• Built on top of MDSAL commit cohort API

• Data caching is used to enable data dependency checks

• Enables proper error message to be reported for failed check



Generic framework for Apps

DataListenerCohort
- List data_check
- List depends_check

ServiceA

CacheManager

ServiceB ServiceC
ValidationCheck

-validate()

V1 V2 V3 VN

Error Data Format



Usage considerations

• Validation must be done FAST as it holds-up the progress of Tx
• Advisable not depend on any external resources

• Callback MUST NOT use any data Tx APIs
• Any other data needed for validation (e.g. data dependency check) should 

be cached



Thanks


