Common NFVI Telco Taskforce Antwerp Face-To-Face Sessions

Fu Qiao, China Mobile Mark Shostak, AT&T Mike Fix, AT&T Lincoln Lavoie, UNH-IOL

Test & Validation

September 2019

Discussion Outline*

CVC Overview

- Structure within LFN
- Philosophy & Terms
- OVP Roadmap & Deliverables

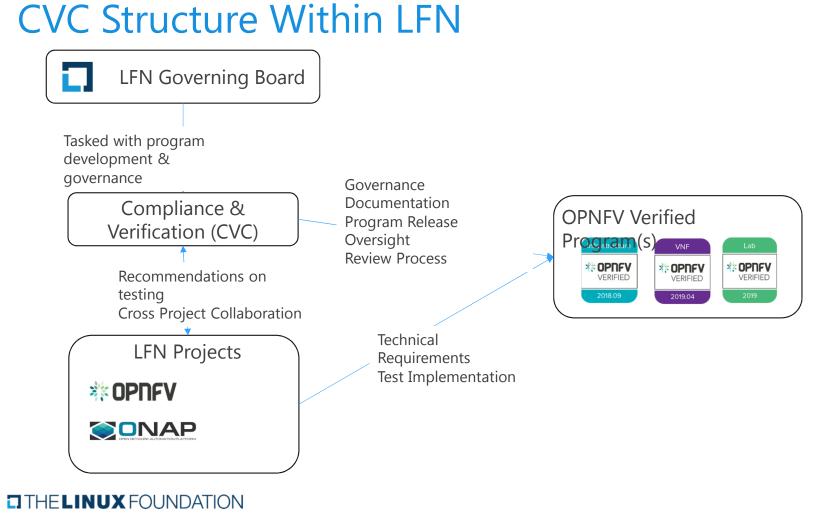
CNTT Relationship with CVC, OPNFV, and OVP

Chapter 8 Team

- North Star & Scope
- Team Progress & Table of Contents

Methodology & Goals

OVP ETE Framework (Intake & Requirements)

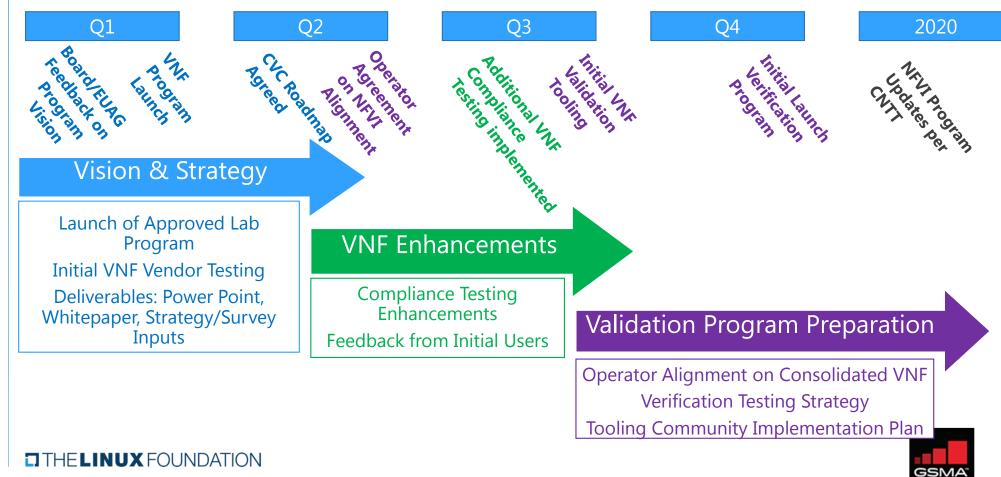

Entrance & Exit Criteria

Test Category/Case Gap Review

*Challenges: Req Gathering, Test Case Traceability, Automated Validation, Normalized Results, ...? THELINUX FOUNDATION

Program Philosophy

- Open program, well aligned with open source best practices
 Support self-testing and 3rd party lab testing
- Reliance on community review processes
 - Requirements, Test Implementation, and Results
- > Uniform approach across projects
 - Single release schedule for badges / updates
 - Consistent definition of test types and badges



Some Terms

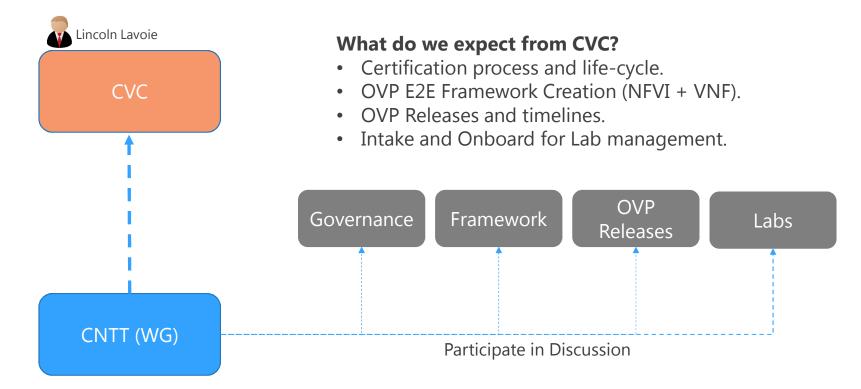
- Compliance Testing to ensure product meets requirements defined by the project
 - > API testing for correct implementation, format, responses, etc.
 - > VNF Template testing per requirements defined by ONAP
- > Validation Testing to ensure product operation meets requirements
 - Testing of API control over the larger system, i.e. use API to create network with expected access controls, etc.
- Performance Testing to measure the capability of the product
 - > Testing of traffic throughput on a VNF to meet a minimum requirement
 - > Testing the minimum number of sessions supported by a VNF
- Should we consider formalizing additional terms?
 - > Stability, on-boarding, interoperability, etc.

GSMA

OVP Roadmap (2019)

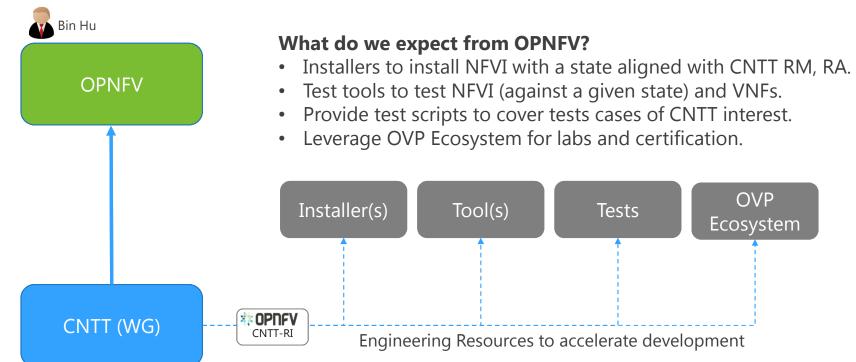
Program Deliverables & Components

- > Test Requirements
- Test Definitions & Implementation
- > End User Documentation
- > Updates to OVP Portal
- > Beta Testing


OPNFV Verification Program (OVP) - I	NFVI Portal		
	OVP verifies products and services with the "OPNEV Verified" mark.		
Infrastructure and ONAP components. The provi conformance and interoperating. F This portails for testing products a Get Started	tions in the doc: OVP Workflow IFVI test results when ready	NFV stack and allows Communication Se	ervice Providers (CSPs) and vendors to establish baselin
	OPNEV Verified Products Directory (NEVI)		
Company	Product	Category	Version
Lenovo. Lenovo	Lenova Select Solution for NFVR with Wind River Titanium Cloud	Infrastructure	2018.09
Wind River	Titanium Cloud	Infrastructure	2018.09
NOKIA Netia	Nokia Edge Cloud NFVI	Infrastructure	2018.09
ENEA Erea Soltvare AB	Enea NFV Core 11	Infrastructure	2018.09
CG U* LG Uptes	U-Stack Cloud	Infrastructure	2018.01
ERICSSON # Ericsson A&	Ericsson Cloud Execution Environment (CEE)	Infrastructure	2018.01
	Nokia Aidframe Cloud Infrastructure for Real-time applications (NCIR)	Infrastructure	2018.01
Wind River	Titanium Cloud	Infrastructure	2018.01
HUAWEI Huanei	FusionSphere Cloud Operating System	Infrastructure	2018.01
ZTE 2TE	TECS Cloud OS	Infrastructure	2018.01
	Nokia AirFrame Data Center Solution	Infrastructure	2018.01

LL

Relationship with CVC


- CNTT will work directly with CVC to align with governance
- Output of CNTT will be input to release scope, labs needs, and augment governance where needed

THELINUX FOUNDATION

Relationship with OPNFV and OVP

- CNTT will work directly with OPNFV via the RI Project
- Output of CNTT-RI will be RI requirements and test cases

THELINUX FOUNDATION

Chapter 8 Team: North Star

Mission

Ensure Implementation of CNTT Reference Model and Reference Architecture meets industry driven quality assurance standards for compliance, verification and validation.

Objectives

- Data Driven RA Verification and Validations
- **OPNFV, CVC, and OVP Processes used** to onboard and check for NFVI compliance

- Entry and Exit Quality Standards are satisfied
- Ensure **test harnesses** can be **ported** and utilized **across multiple distributions**

Guiding Tenets

- Verification and Validations determine
 NFVI+VNF compliance
- **Verification** signals conformance to design requirement specifications
- Validations signals compliance that output of a product meets the expected, or desired outcome
 THELINUX FOUNDATION

- **Certifications**, are out of scope as this measures adherence to development, however, no code is being delivered by testing
- OVP and CVC track and govern RM/RA verification

Scope

Scope & Test Strategy

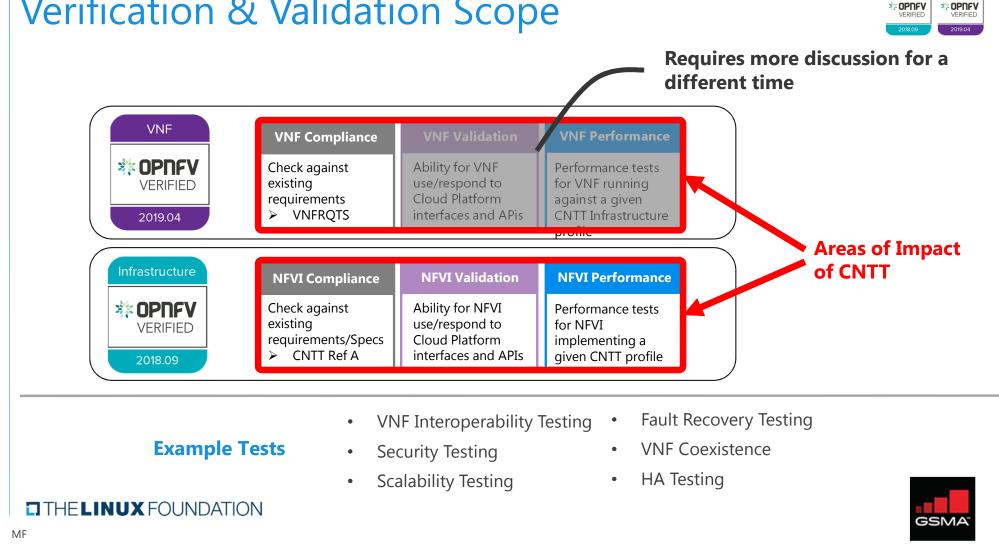
- Manifest Verifications verify NFVI matches hardware and software profile specifications for RM/RA
- Empirical Validations baseline NFVI and Ref/Golden VNFs behaviors for future comparison
- **Interoperability Validation** performed leveraging VVP/CVC test suites to ensure VNF can be spun up, modified, or removed, on the target NFVI

Not In Scope

• VNF functional testing

• Validating VNF's ability to be upgraded

• ONAP as a MANO for VNFs


• Georedundant and Load Testing

Different Distributions

Repeat the strategy of Manifest Verification, Empirical Golden VNF Validations, and Interoperability Testing for any new Distributions.

Verification & Validation Scope

Team Progress

TC Gap Assessment

- Deep-dive of OPNFV, CVC, and OVP Process
- Initial pass assessing Key Active OPNFV Projects for CNTT alignment
- Normalize TC Review results format
- PTLs provide Test Suite data
- Initial Test Category/Case Review

Setup Lab

- Finalize RM/RA/RI requirements
- Identify initial lab hardware needs
- ① Configure SUT, & Execute Sanity
- () Identify and Close Gaps in TCs

THELINUX FOUNDATION

9/19/2019

Partnerships & Communications

- Stakeholder Verizon as co-author of Verification Process
- Launch PR Campaign with the OPNFV TSC and CVC
 - Continued CNTT>OPNFV>CVC alignment discussions
- OPNFV Proposal Review 9/9-9/16
- OPNFV TSC Project Vote 9/17

ĭΞ

Documentation

- Outline & Initial Merge Complete
 - Working GitHub Issues
 - Define & vet Verification Methodology
- Create Annex, Developing Content
- Finalize Ch 8 Content & Publish
- () Finalize RI Content

Chapter 8 - Table of Contents

Synopsis

- Introduction Overview, problem statement, scope
- Principles and Guidelines Details on objectives, verification methodologies, and governance
- Terms and Resources Common terms and external documentation

Process & Management

- Lifecycle and Process Flow Project management guidelines, onboarding, SLAs and Issue Resolution
- Current OVP/CVC Process Existing process, test frameworks, tools, test cases/scenarios and test certification guidelines

Verification & Validation Strategy

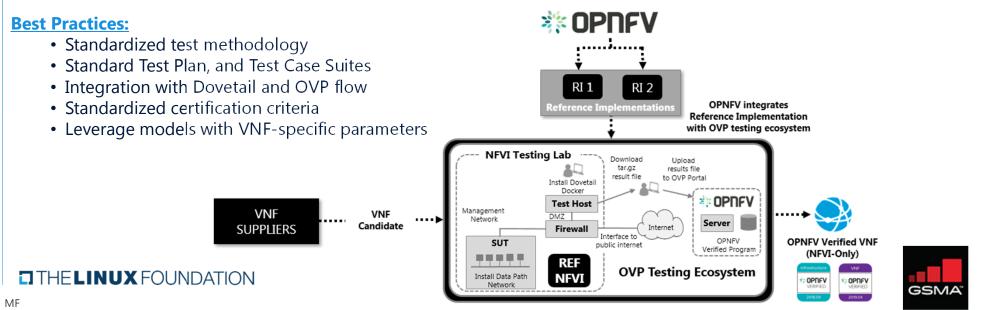
- CNTT/NFVI Validation Approach Augmented OPNFV and OVP certification process using NFVI Verification, Empirical Validation, and VNF Interoperability Validation
- Quality Assurance Dependencies, Recommendations, Assumptions, System Under Test (SUT) pre-reqs for certification, Entrance/Exit Criteria, Test Frameworks, Categories, Harness(es), and Tools
- 🕒 Test Results Metrics, Measurements, and Respective Certifications and Badges e.g. pass/fail, measure only, etc

Forward Looking

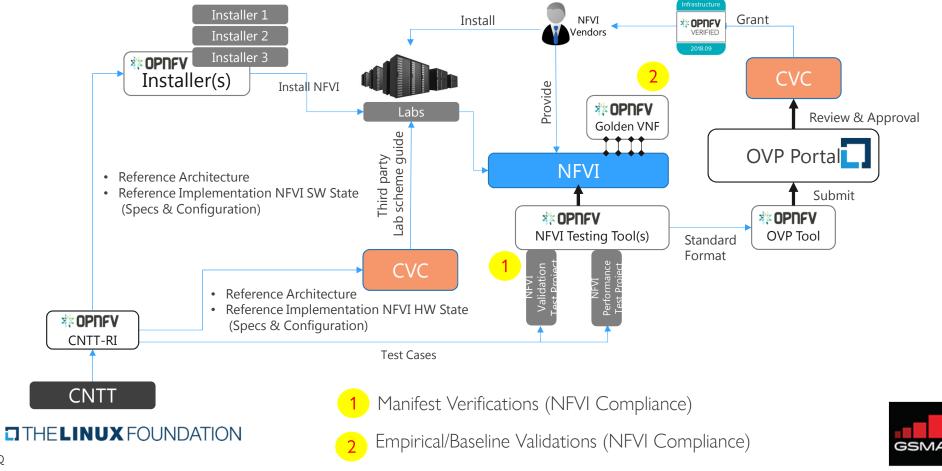
- () Future Planning Additional considerations, documentation, lab mgmt, tools, or test strategies (GeoRed, DR)
- () **<u>Recommendations</u>** Best practices (placeholder) after initial implementation of RA#1

THELINUX FOUNDATION

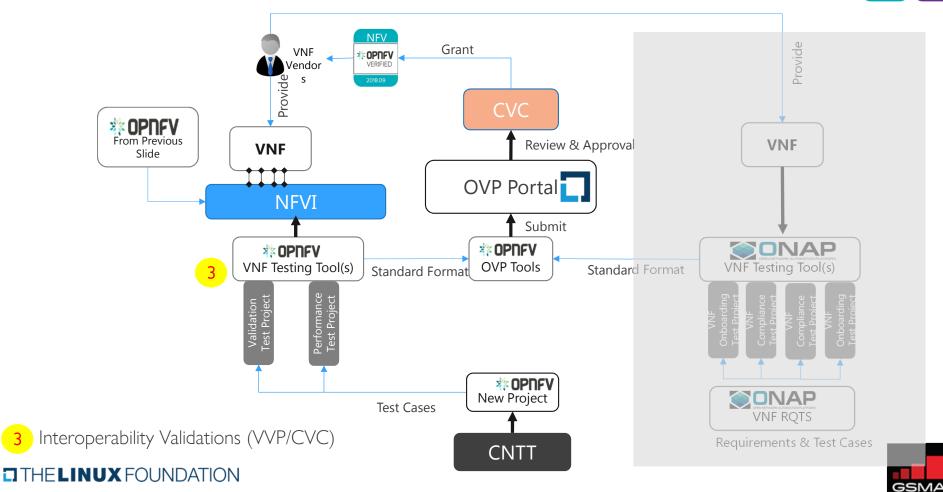
14


Methodology & Goals

Methodology: Perform NFVI validations using CNTT reference architecture, leveraging upstream projects to define features/capabilities, test scenarios, and test cases, to be executed via the OVP Ecosystem.


OVP/CVC Validation Strategy & Vehicle:

- NFVI Verification (Compliance): NFVI is the SUT, ensuring NFVI is compliant with specs of RM and RA
- Empirical Validation with Reference VNF (Validation): NFVI is the SUT, ensuring NFVI runs with Golden VNFs
- Candidate VNF Validation (Validation & Performance): VNF is the SUT, ensuring VNFs operate with RM and RA
- Security: Ensures VNF is free from known security vulnerabilities, utilizing industry standard cyber security frameworks



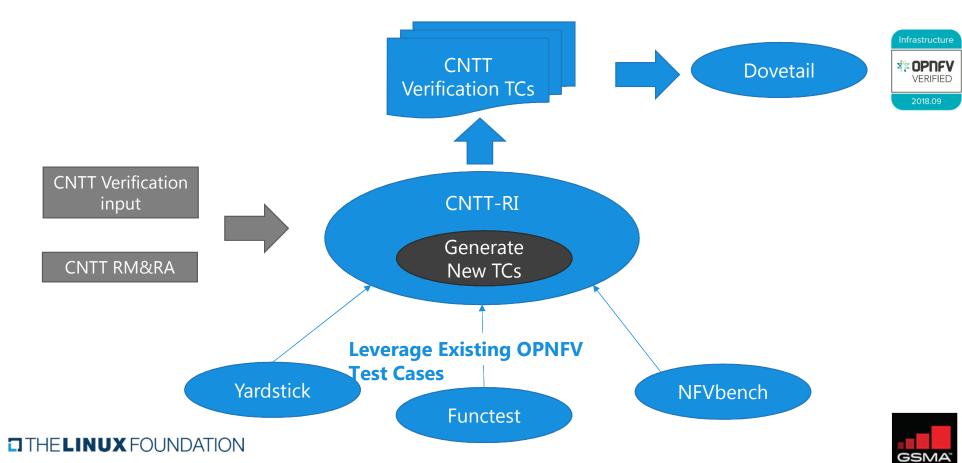
OVP Framework – NFVI Validation

OVP Framework – NFVI+VNF Validation

NTFV 🕸

VERIFIED

**** OPNFV**


VERIFIED 2019.04

FQ

3

Enhance Intake into OVP Framework

FQ

OPNFV/OVP Entry & Exit Criteria

— Prior to Testing – VNF Supplier Provided

OPNFV Entrance criteria must be satisfied before testing starts. This demonstrates implementation of CNTT Reference Architecture.

Entrance Criteria

- Design Details Provided
 - High/Low Level Design (Config, Features)
- Environment (document, secured, connected)
- Test Requirements
- Testing schedule
- Completed security review
- Test owners documented
- Test assets available
 - Images, configurations, templates, etc
- Additional vendor-specific test cases documented & supplied

THELINUX FOUNDATION

Prior to Telco Handoff – VNF Supplier Verified

OVP Exit criteria must be satisfied to receive CVC Validation Badges. Validation demonstrates adherence to CNTT NFVI Quality Standards.

Exit Criteria

- All test cases have a valid status
- No outstanding high severity issues
- Known defects and outstanding issues are clearly documented
- Operationally Stable and Functional
 - API end-points reachable/working
 - Standard Images present, and operational
 - Snapshots and backups working
 - NFV migration is confirmed working

Documentation is available

- Deploy, config, admin, user, API guides
- Release notes

Test Category / Case Gap Summary

Projects Identified

* Airship Installer Barometer Bottlenecks Doctor * Dovetail * Fuel FuncTest

* High Availability NFVBench * Pharos SampleVNF VSPerf Yardstick

- # Total OPNFV Projects = 31
- # CNTT-NFVI = 13 (potential value)
- # 5/13 NA for Review *Already Covered by Yardstick and Functest

Results

- # 6 Projects can be adopted (as is)
- # 4 We can add/augment TCs for gaps
- # 3 Create projects for new testing

THELINUX FOUNDATION

Form Professional Opinion – e.g. augment, adopt

Identify Gaps

•

Assessment Strategy

Solicit Strategic Partner Contributions •

Compare Against Test Categories

Test Categories

- (Hardware Validations) BareMetal HW & O/S validations
- (Component Validation and VNF Validation Config Only) VNF Interoperability – validations
- (Platform Stability) Compute Component validations

Select Project by activity, use, and maturity state

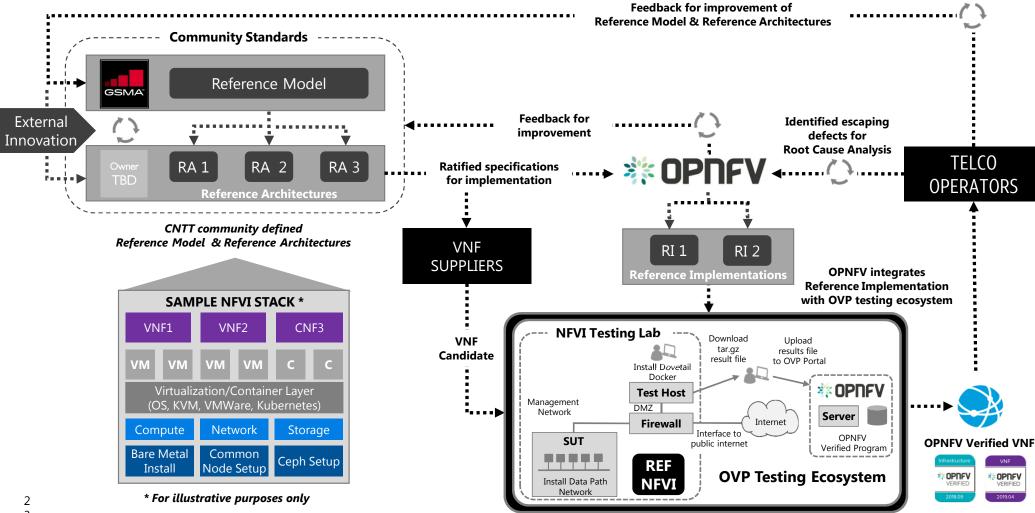
(Platform Resiliency) Control Plane Component – validations

Next Steps

- **Review Projects** Identified during Antwerp not considered
- **Integrate TCs** from these projects into the delivery stream
- Discuss augmenting existing test projects, or create new
- **Onboard Spirent Test Case contributions Where?**
- **Finalize** Test-/Use- Case Needs •

Project	Purpose	Recommendation
FuncTest	 Functional interoperability validations 	 ADOPT, as an RI suite. Covers 2k+ Openstack Interoperability Validations Augment to include Baremetal testing for Manifest Validations
Yardstick	 VNF/Payload performance validations 	 ADOPT, 62 TCs, leverages Shaker and YAML for test-case development Augment to perform POD restarts and HA for Maria/Ceph restarts
VSPerf	 vSwitch perf testing 	 ADOPT, for OVS-DPDK validations with 32 perf and functional TCs Setup external packet generator to avoid latency caused by the tool.
DoveTail	 Automation framework 	✓ ADOPT, with large number of test cases for conformance evaluation
Barometer	 Platform availability and NW usage validations 	 ADOPT, for use of NFVI+VNF validations capturing Telemetry data Augment to include device specific resiliency testing and monitoring.
"NEW"	 Baremetal Validations 	✓ CREATE New Baremetal Validations to verify engineering packages
"Augment"	 Spirent Validations 	✓ Augment projects with 240 TC adds for load, scaling, cloud migration.
"NEW"	 Chaos Toolkit 	✓ CREATE New , project to test POD resiliency by injecting chaos (failover)
Bottlenecks	Stress Testing	×Not recommended with limited test sets and results categorization
Doctor	Computer NFVI Fault Mgmt validations	XNot recommended with limited/no coverage for SDN, KVM, or containers
XTesting	• CICD tool chaining in CNTT validations.	 ? REQUIRES POC if CNTT NFVI requires ADOPTION and USE of tool chaining. ? There are no specific TCs, as XTesting is for chaining together CICD test projects, and not for NFVI validation.
NFVBench	NFVI Perf Measurements (at physical hardware/host level)	 ADOPT, as a complement to vsperf and yardstick Augment to expand SRIOV and/or OVS-DPDK test cases.

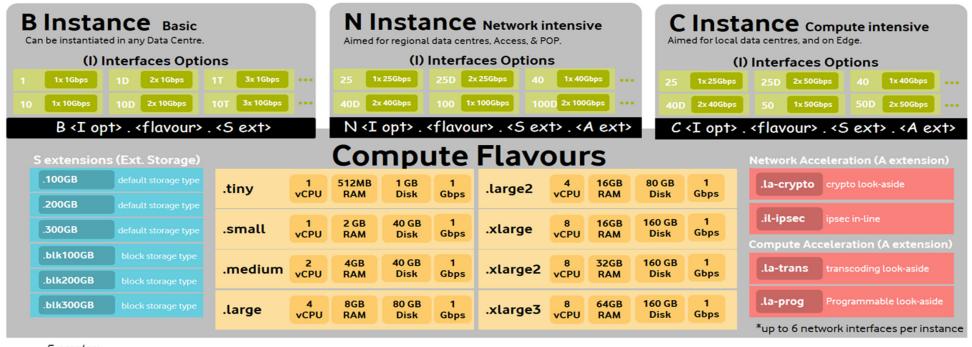
Backup Slides



22

COMMON NFVI LIFECYCLE FRAMEWORK

CNTT NFVI Reference Levels

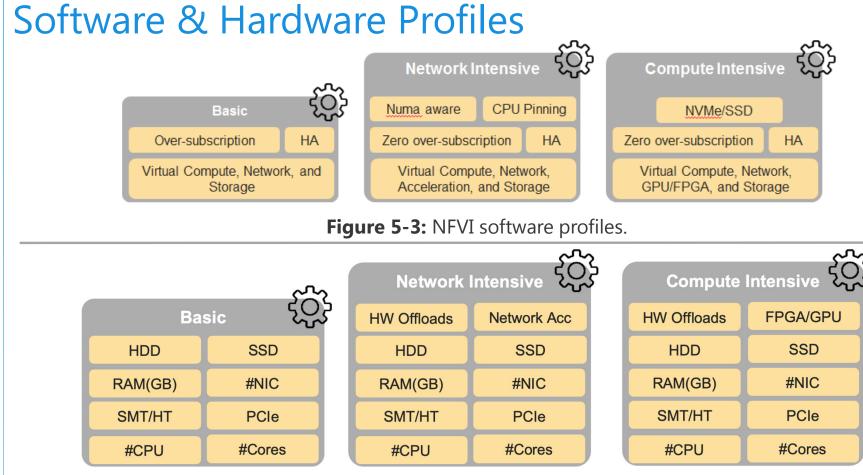

	L0 : Infra Abstraction for VNFs	•	Common across any laaS/Cloud/VIM Technology choice Exposes virtual resources to VNFs in form of profiles/compute flavors Defines set of capabilities and metrics of NFVI concerning VNFs	ence
	L1: Cloud Platform Agnostic Req	•	Set of features of NFVI to deliver capabilities Act as functional requirements for NFVI Reference Architecture Common across any IaaS/Cloud/VIM Technology choice	Reference
	L2 : High Levels	•	One instance of this artefact per technology choice (OpenStack, VMware, etc.) The content of each instance is common across vendors for the same technology choice Focus on high level components and interfaces (such as virtio for OpenStack)	ence
	L3 : Component Levels	•	One instance of this artefact per technology choice (OpenStack, VMware, etc.) The content of each instance is common across vendors for the same technology choice Focus on functional blocks and interfaces for interoperability between components	Refe
	L4 : High Levels Design	•	There will be multiple instances of this artefact (one per distribution/vendor products) The content of each "instance" is specific to that distribution, and includes configuration specifics that conform to higher levels	ence
Ţ	L5: Low Levels Design	•	As above but with more specific details relative to a specific version of a distribution Also, this layer will include CPU architecture specifics?	Refer

eference Model

Reference Architecture

24

Instance, Flavor, Acceleration Options – B / N / C


Examples: B10.tiny 1x 10 Gbps 1 S12MB 1 GB 1 Gbps B10T.small.100GB

3x 10 Gbps 1 2GB 50 GB 1 .100GB

N40D.larg	e				
2x 40 Gbps	4 vCPU	8GB RAM	80 GB Disk	1 Gbps	
N40.mediu	ım.obj1	00			
1x 40 Gbps	2 vCPU	4GB RAM	40 GB Disk	1 Gbps	.obj100GB

C50.large	C50.large.la-trans				
1x 50 Gbps	4 vCPU	8GB RAM	80 GB Disk	1 Gbps	.la-trans
C100D.xlarge2.il-ipsec					
2x 100 Gbps	8 vCPU	32GB RAM	160 GB Disk	1 Gbps	.il-ipsec

THELINUX FOUNDATION

Figure 5-4: NFVI hardware profiles and host associated capabilities.

GSMA

Current OPNFV/OVP Certification Process

CVC Compliance, Verification, and Certification governing framework:

- **Compliance testing**: compares the system under test against the specifications / standards
- Validation testing: ensures the system under test is operating according to its intended / required purpose
- Performance testing: measures how well the system under test performs its specific purpose(s)

OVP certifications are accomplished as a two-part process:

- 1. OPNFV provides Test Tools and Test Cases to OVP.
- 2. OVP provides vendor NFVI products a "badge" claiming "OPNFV-certified" once OVP testing passes successfully (via Dovetail).

Test frameworks and supported test cases for OVP Certifications include (OPNFV and ONAP):

1. OPNFV – NFVI Testing and Certification

CVC Category: Validation, Compliance Purpose: NFVI platform is checked against the Open Stack requirements Test framework, test result database and Web UI Dovetail project Test tools, test cases and test execution API testing (FuncTest) Performance and HA (Yardstick) Load testing (Bottleneck)

2. ONAP – VNF Testing and Certification

CVC Category: Compliance, Performance Purpose: VNF template is checked against the ONAP Requirements

- VNF Validation/Packaging Compliance (HEAT and TOSCA/CSAR/VFD)
- Web front-end integrated with OPNFV Dovetail Web UI
- Future plan: testing of VNF lifecycle, VNF functions, VNF performance

THELINUX FOUNDATION

VNF Validation Testing - CVC and ONAP teams are working to develop the initial life-cycle tests for VNF devices. The first release will run on the "basic open stack" meeting ONAP requirements. Future versions would require this to be the reference NFVI defined by CNTT

Test & Validation: OPNFV/OVP Entry/Exit Criteria

ENTRANCE CRITERIA

OPNFV entrance criteria must be satisfied for VNF certification.

Demonstration of Reference Architecture Implementation

Design & Requirements

- Design, Configuration, Features, SLAs, and Capability documentation complete
- Users stories / Adherence to CNTT Model principles and guidelines
- Chosen RA Matches a RA from the product catalog

Environment

- Lab / Flavor, component s/w rev levels specified, with confirmation of compatibility with external systems
- Tenant needs identified
- All connectivity, network, image, VMs, delivered with successful pairwise tests
- Lab instrumented for proper monitoring

Planning & Delivery

- Kickoff / Acceptance Criteria reviews performed
- Delivery commitments, timelines, and cadence accepted
- Confirm backward compat. across software/flavor rev levels

Data / VNFs / Security

- Images, Heat Templates, Preload Sheets available
- Images uploaded to tenant space
- External system test data needs identified
- Owners (NFVI, VNF, PTL, etc) documented
- Security Compliance Satisfied (see Ch. 8 scans, vulnerabilities)

Test Case Contributions

- VNF Developer/Supplier validations to be performed documented and supplied
- NFVI validations to be performed supplied (e.g. echo, manifest)
- Test to ensure users are added and have correct privileges for the tenant
- Test to ensure quota against submitted request for the respective tenants 2
- Test to ensure custom flavors against submitted request for respective tenants 8

- EXIT CRITERIA

CERTIFICATION TENANTS (via OVP Ecosystem)

- All Test Cases have a status of "Passed", "Failed", "N/A" or "Out-scoped".
- All Severity 1 and Severity 2 issues are resolved.
- All Issues have been Resolved or the Project/Component Team has voted unanimously for a Conditional Certification.
- Known defects, or issues, are clearly documented and furnished to Telco providers with certification notes.
- Certification Notification(s) issued.

OPERATIONAL CONSIDERATIONS (TELCO PERSPECTIVE)

- Orchestration capabilities verified to be working as expected
- Fabric setup/configuration validations successfully passed
- Openstack API endpoint is reachable and working for that zone
- Compute zones and cinder types verified
- Standard images verified to exist (and usable)
- Network object created (and working, as in IPs are bindable and usable)
- Resolver overlay/DNS traffic/port 53 overlay on gateway is working properly
- Designate is working, domain preferably created, and maybe test A record created/verified to be resolvable
- Standard NTP servers are working and verified (using tenant's CIDR source IP)
- NFVI/VNF is tested at steady state and high load
- Continuously monitored to ensure SLAs are met and used as feedback to load/perf tests

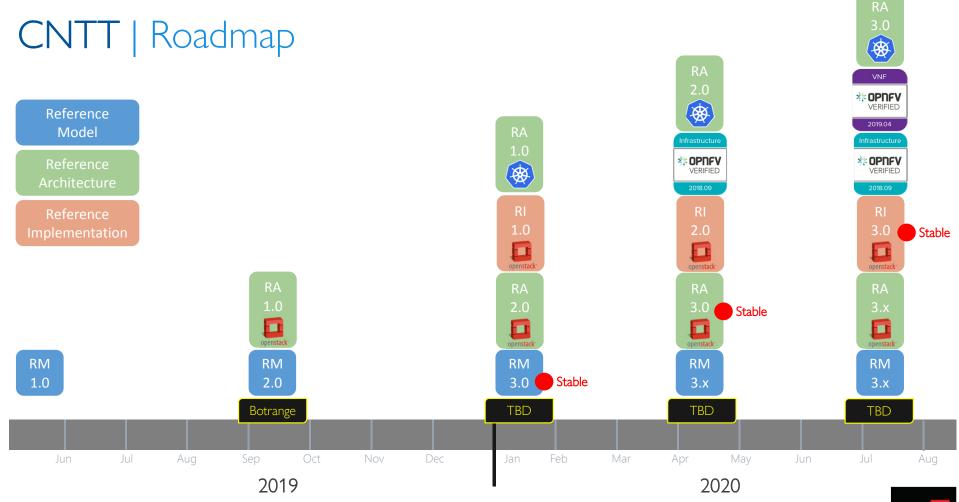
END USER CONSIDERATIONS (TELCO PERSPECTIVE)

- Component redundancy to ensure graceful updates without disruption of services
- Thin provisioning storage should handle actual full quota usage cases
- Load balancing should support elasticity
- SRIOV Network configuration via SDN must be aware of all VMs on a host (and their network config)
- Auto-healing databases (any component related db) when out of sync
- Obvious, but, supports all required network functionality (all protocols, service chaining, VLAN trunking, QoS marking, probe/mirror, etc)
- Supports NFV migration
- Supports snapshots and backups of large volumes
- Pre-check or audit failures during NFV deployment should allow follow-up mitigation, when possible, rather than killing deployment and rolling back

Recommend Adopt and/or Augment

Project	Gaps	Recommendation
FuncTest – functional interoperability validations	 Doesn't directly verify Baremetal and Operating System for Manifest Validations 	 ADOPT as an RI suite. Covers large (2k) Openstack Interoperability Validations including test support of Dovetail, Pharos, AirShip, and Fuel, for example. Augment to include Baremetal testing, or stand up separate test project to cover Baremetal which supports "Manifest Validations". Reuse functest-smoke (functional test mostly based on tempest), functest-benchmarking (rally_full and rally_jobs) and possibly the other tiers.
Yardstick - VNF/Payload performance validations	 SRIOV/DPDK: No frame-size (MTU) for validating VNF perf parameters No TCs defined for emerging OVS-DPDK 	 ADOPT, 62 TCs, leverages Shaker and YAML for test-case/scenario development. Augment (tc025 node down HA check) to perform POD restarts on nova, neutron, etc. HA framework to check MariaDB and CEPH during node restarts. Reuse as TCs are broad across core components, resiliency, HA, compute, network, and storage. TC test general VNF requirements of: latency, throughput, packet-loss, IOPS.
VSPerf – vswitch perf testing	 None 	 ADOPT for OVS-DPDK validations with 32 TCs covering performance and functional testing, validating Throughput, Scalability, Memory, NIC acceleration, etc. Setup external packet generator tool from the SUT to avoid latency caused by the tool.
DoveTail – automation framework	 None 	✓ ADOPT, as an automation framework with access to large number of test cases for conformance evaluation tests such as security flaws in OpenStack(VIM), K8s, Tenant HA and various other conformance areas.

Recommend Adopt and/or Augment


Project	Gaps	Recommendation
Barometer – platform availability and NW usage validations	 Limited coverage with VNF traffic monitoring, or network usage. Includes, but not limited to monitoring VNF when traffic is introduced, handling of that traffic, or reacting to faults to confirm resiliency of the device 	 ADOPT. for use of NFVI+VNF validations given the broad breadth of evaluations performed with the Barometer framework: CPU utilization, Monitoring, Telemetry, etc. Augment to include device specific resiliency testing and monitoring.
" NEW " – baremetal validations	 Baremetal Validations lacking from any known project. 	 CREATE New, or confirm if Baremetal Validations can be inserted into an existing project to validate baremetal delivery matches the manifest, or engineering package provided. e.g. validations to include, but not limited to: NUMA config checks, NIC frame size (MTU), Huge Page configuration, BIOS, Firmware, checks etc.
" NEW " – Spirent Partner	 Gaps in NFVI Assurance, VIM/OpenStack Assurance, and VNF & NS LCM (Life Cycle Mgmt) 	 Augment existing test projects, or possibly Create New, with the following additional test cases: NFVI Assurance – add 30 TCs, extreme scale load generation, cloud migration assistance VIM/OpenStack Assurance – add 70 TCs, VIM scale testing and consistency checks at scale VNF & NS LCM (Life Cycle Mgmt) – add 140 TCs, VNF/NS LCM autoscaling testing
" NEW " – Chaos Toolkit	 Lack of tool/project to measure uncertainty of distributed systems at scale to discover platform weakness 	 CREATE New, or confirm existence of, a tool to test the Kubernetes PODs for resiliency by injecting chaos and test if the PODs recover from chaos. e.g. scenarios include: Node failover testing, RabbitMQ resiliency, impacts during CEPH outage, container POD eviction and replication after shutdown, etc.

Not Recommended

Project	Gaps	Recommendation
Bottlenecks – stress testing	 Limited test-suites, needing stability, robustness, and SLA test suites/capabilities Not built out as a tool that considers different hardware and middleware capabilities along with true VNF load testing. 	 ×Not recommended as a CNTT test suite as it relies on other test projects for test cases. ×With limited test sets, categorization of results will not paint the whole picture and as such, other tools (albeit outputs without categorization) may be better suited.
Doctor – compute/NFVI fault mgmt.	• Few parameters based on which the fault mgmt. alarms are triggered such as VM status(whatever nova provides), Port issues affecting connectivity.	 × Not recommended as TCs need to be enhanced to cover more fault scenarios – SDN, KVM, etc. × Recommendation is for Doctor PTL to extended fault monitoring to container infrastructure, and not be limited to VIM/OpenStack.
XTesting – CICD tool chaining	 None; however, PoC required to evaluate need-for CICD tool chaining in CNTT validations. 	 ? REQUIRES POC if CNTT NFVI requires ADOPTION and USE of tool chaining. ? There are no specific TCs, as XTesting is for chaining together CICD test projects, and not for NFVI validation.
NFVBench – NFVI perf (blackbox)	Limited SRIOV and/or OVS-DPDK validations for NIC virtualization testing.	 ADOPT, as a complement to vsperf and yardstick which measure VM level NFVI perf, whereas NFVBench evaluates NFVI from the physical hardware/host level, and includes an extensive test coverage around VxLAN. Augment to expand SRIOV and/or OVS-DPDK test cases.

THELINUX FOUNDATION

GSMA