Opendaylight scalability issues in super scale data center

Yi Yang@Inspur Cloud
Content

• Controller Clustering Stability, Reliability, Scalability
• South bound plugin scalability
• VXLAN scalability
• Other misc. issues: startup time, memory consumption, too many threads, ...
Controller Clustering Stability Issues

- Not reliable, https://jira.opendaylight.org/browse/CONTROLLER-1892
 https://git.opendaylight.org/gerrit/p/integration/test.git ./csit/suites/openstack/clustering/ha_l2.robot can reproduce this very easily
 https://jira.opendaylight.org/browse/NETVIRT-1318 MDSAL best practice
 https://git.opendaylight.org/gerrit/#/c/62886/
 https://git.opendaylight.org/gerrit/#/q/topic:transaction-helper
 https://git.opendaylight.org/gerrit/#/c/63372/
 https://git.opendaylight.org/gerrit/#/c/63402/
- To Be Done: https://jira.opendaylight.org/browse/NETVIRT-1320,
- An example using managed transaction: https://git.opendaylight.org/gerrit/#/c/75005/
Other Issues of Controller Clustering

• How can it work with 127 cluster nodes?
• Replication to other 126?
• More granular shard: e.g. per openvswitch group for topology and inventory
• Cluster leader, shard leader and openvswitch master, it will be better if shard leader is same as openflowplugin master for openvswitch.
• Is read possible in any follower shard?
• Is asymmetric clustering possible? Nodes for neutron server and nodes for southbound device/openvswitch.
• Does Database backend help on these issues?

https://wiki.opendaylight.org/view/Project_Proposals:Alt-datastores
Southbound plugin scalability

- Inventory and network topology data store are big
- Openflowplugin clustering just uses 3 controller nodes (one master, two slaves), master can do read, write, flow statistics and async messages handling, slave only can read.
- A small lightweight southbound 3 node cluster is preferred for a group of compute node/network node.
- The same solution is applied to ovsdb
Is ODL Controller Cluster ready for super scale data center?

How can we make it easy to scale out ODL cluster in a 2000 to 10000 node data center?
ZTE vDC ZENIC SDN Controller V2.00.10

Distributed Controller Cluster

2+N nodes: 2 master controllers (Active/Passive), N (1-128) southbound controllers
VXLAN scalability

• VxLAN tunnels are full-meshed between all the nodes, it is non-scalable
• ODL doesn’t support l2population
• L2population is also non-scalable although it is a big leap forward
• Ericsson folks are working on of-tunnel in itm-direct-tunnel in genius
• It is almost ready for merge
• Demo
Other misc. issues

- Use too much memory
- Slow startup
- Too many threads

Optimization:

- lighty.io (https://lighty.io/ remove karaf, faster with better memory efficiency)
- opendaylight-simple (https://github.com/vorburger/opendaylight-simple), use guice (pronounced 'juice', a lightweight dependency injection framework) instead of karaf
vagrant@odl3:~/karaf-0.9.0-SNAPSHOT$ cat /proc/21568/status
VmPeak: 5958792 kB
VmSize: 5958780 kB
VmLck: 0 kB
VmPin: 0 kB
VmHWM: 1552248 kB
VmRSS: 1552080 kB
VmData: 5882396 kB
VmStk: 136 kB
VmExe: 4 kB
VmLib: 18784 kB
VmPTE: 3660 kB
VmPMD: 36 kB
VmSwap: 0 kB
Threads: 112
vagrant@odl3:~/karaf-0.9.0-SNAPSHOT$
opendaylight-user@root>feature:install odl-netvirt-openstack

vagrant@odl:~/karaf-0.9.0-SNAPSHOT$ cat /proc/3984/status
VmPeak: 6422860 kB
VmSize: 6422812 kB
VmLck: 0 kB
VmPin: 0 kB
VmHWM: 1618084 kB
VmRSS: 1545348 kB
VmData: 6339112 kB
VmStk: 136 kB
VmExe: 4 kB
VmLib: 19040 kB
VmPTE: 4112 kB
VmPMD: 36 kB
VmSwap: 0 kB
Threads: 289
vagrant@odl:~/karaf-0.9.0-SNAPSHOT$
Summary

• ODL Controller Clustering is **NOT** stable, **NOT** reliable and **NOT** scalable for super scale cloud data center
• ODL is **NOT** container friendly
• Southbound plugin scalability is **BAD**
• VXLAN is **NOT** scalable (in progress)
• Startup is **SLOW**
• Memory consumption is **BIG**
• Too **MANY** threads

Call for action: ODL community needs to take efforts on these directions, they are very important for ODL if we want to push ODL to cloud data center.