
ONAP R6 - Evolution of LCM Support in SO and Controller
LFN DDF, June 12, 2019

Oskar Malm (Ericsson)



Purpose

• This session aims to provide some additional perspectives around 
LCM support improvements needed for R6 use cases
- In particular further development of the PNF SW Upgrade UC

- No additional UC is proposed

• This presentation is partly based on outcome from recent ONAP 
architecture discussions around controller API evolution
- https://wiki.onap.org/display/DW/ONAP+Controller+Evolution+Consideration+-

+LCM+APIs

- https://jira.onap.org/browse/ONAPARC-470?src=confmacro

https://wiki.onap.org/display/DW/ONAP+Controller+Evolution+Consideration+-+LCM+APIs
https://jira.onap.org/browse/ONAPARC-470?src=confmacro


Topics

• Background (Dublin)
- ONAP Self-Service Concept

- SO Workflows and Building Blocks

• Proposed Enhancements for Frankfurt Release
- Use of CDS for LCM actions

- Improved PNF support

- Open Questions

• Way Forward



ONAP Self-Service Concept

Service Orchestrator (SO)

Controller

Mapping Layer(s)

1. As part of onboarding and design process, xNF-
specific controller artifacts are created and 
distributed/installed in controller

2. When receiving LCM or config action request 
from client, the controller will use the controller 
artifacts to map the action to a protocol suitable 
for the xNF
• For actions related to configuration, the 

self-service process also allows definition 
of configuration templates

Note: Only subset of actions supported by 
controllers are in the self-service category

VNF/PNF

VNF/PNF-specific interface

Directed Graphs, Templates, Playbooks etc

Design Tool

1 2



Service Orchestrator (SO)

Self-Service Options in Dublin

APPC

LCM API Handler

APPC Client CDS Client

SDNC

LCM API Handler

CDS Blueprint 
ProcessorService Logic 

Interpreter
Service Logic 
Interpreter

SDNC currently supports 
subset of APPC LCM API, 
but lacks design tool like 
CDT

The main design 
tool for self-service 
is APPC CDT

CDS provides own 
design tools

CCSDK micro-
services currently 
deployed by SDNC

LCM API (DMaaP) CDS Self-Service API (gRPC)



SO Workflows and Building Blocks

• Workflow-centric orchestration 
(BPMN)
• Service Instantiation
• VNF Scaling
• Change Management

• Pre-defined and re-usable building 
blocks (BPMN sub-processes)
• Uses supporting Java classes to 

perform various tasks
• Controller actions
• AAI updates
• ...

Check
Pservers

LockedFlag
(A&AI)

Check 
InMaint

Flag (A&AI)

Set 
InMaint

Flag (A&AI)

Check 
ClosedLoop

Disabled
Flag

(A&AI)

Set 
ClosedLoop

Disabled 
Flag

(A&AI)

VNF Lock 
(APP-C)

VNF 
Upgrade 
Precheck
(APP-C)

VNF 
Quiesce
Traffic 

(APP-C)

VNF Stop 
(APP-C)

VNF 
SnapShot
(APP-C)

VNF Start 
(APP-C)

VNF 
Upgrade 
Backup 
(APP-C)

VNF 
Upgrade 
Software 
(APP-C)

VNF 
Upgrade 

PostCheck
(APP-C)

VNF 
Resume 
Traffic

(APP-C)

VNF Unlock 
(APP-C)

Unset 
InMaint

Flag (A&AI)

Unset 
ClosedLoop

Disabled 
Flag (A&AI)

Example: VNF in-
place upgrade



SO

SO Workflows in Dublin

APPC

LCM API Handler

APPC Client CDS Client

SDNC

LCM API Handler

CDS Blueprint 
ProcessorService Logic 

Interpreter
Service Logic 
Interpreter

Building Block Building Block

Change 
management, 
scaling (VNFs only)

Post-instantiation 
configuration 
(VNFs and PNFs)



Proposed Frankfurt Enhancements

• For change management workflows like PNF SW Upgrade
- Enable use of CDS Blueprint Processor for the controller LCM actions

- Address current gaps around PNF support

• Related to this a few guiding principles should be agreed



SO

Addition of CDS Path

APPC

LCM API Handler

APPC Client CDS Client

SDNC

LCM API Handler

CDS Blueprint 
ProcessorService Logic 

Interpreter
Service Logic 
Interpreter

Building Block

Starting in Frankfurt, there can be SO building 
blocks that use either APPC or CDS API path
• Recommendation from previous community 

discussions to branch early (SO rather than 
on controller side)



API and Controller Decision Tree

Building Block (BPMN + Java)

Controller Persona A

API #1 API #2

Controller Persona B

API #1 API #2

With multiple APIs, in general two main decisions 
have to made within the bulding block
1. Which API to use for this xNF and LCM action
2. Which controller persona to use in case the API 

is supported by multiple personas
Proposal for R6
1. Base decision on model data from design time
2. Same solution as in R4 in case of APPC LCM API, 

for CDS API no selection is needed until 
supported by multiple personas

Note: On top of this, workflow design or model data 
will decide if building block itself is executed or not

1

2



PNF Support

• For change management, should allow designing (SDC) and invoking 
workflows for PNF resources

• At building block level, workflow activities today use the new building 
block framework
- It needs to be extended to support PNFs

• This improvement is also needed for supporting PNFs in generic instantiation workflow

<bpmn:serviceTask id="TaskUpgradePreCheck" name="VNF Upgrade PreCheck”

camunda:expression="${AppcRunTasks.runAppcCommand(InjectExecution.execute(

execution,

execution.getVariable(&#34;gBuildingBlockExecution&#34;)),

execution.getVariable(&#34;actionUpgradePreCheck&#34;))}">



Open Questions

• When should SO activity building block be shared or dedicated for 
VNFs and PNFs?

• In case a new LCM action is defined, is it ok to only implement the 
CDS path?
- Same recommendation for VNFs and PNFs?

• How are payload parameters documented for standard LCM actions, 
and how is alignment ensured between APPC and CDS if supported 
by both?

• Should xNF resource models (SDC) be evolved compared to R4, to 
provide better control over when to use CDS and which blueprint?



Way Forward

• Continue discussion in the community about the open issues

• Plan follow up in ARCHCOM

• Drive LCM support improvements as part of the PNF SW Upgrade UC 
in R6
- Not tracked as separate UC or requirement



s

Thank You!


