Architectural Implications of a Model Driven ONAP

Aims

* Recap / expand on presentation in San Jose
 From an architectural perspective, what do we mean by “model
driven”?

What level of “model-driven” do we want to achieve?
 Example use case

e Discussion

1 THELINUXFOUNDATION

Model Driven Systems

Models can be defined at various stages in the lifecycle of a system

« Capability Models
- Describe the capabilities and protocol of the interface exposed |
by the component / system Model Driven System User

« REST API User Models
« Event topic / queue (®)]Mudiﬁ;system

hehaviour

 Extension Models Extension Models

- Provide a means for system administrators to extend the , Extend the systems
behaviour of a component / system by adding models at § capability

runtime :
» Additional REST resources, event types | i ©
» Are there examples of this in ONAP? :

i Maodel Driven
i System Administrator

* User Models

- Deployed by users of the system to modify the behaviour of
the system

» Service descriptors, YANG network resource models,
blueprints

1 THELINUXFOUNDATION

Capability Models and Interfaces

* Interfaces between services are contracts.

Interfaces comprise of a number of aspects: Model Contract Concepts
I e
- Behavioural contract: what happens when Schema Gov'ernsthe syntax and semantics of elements and XSD, ASN.1,
t- API .. k d Language attributes YANG, OpenAPI
an operation on an IS INVOKe Specification, AAI
- Protocol contract: transport / schema
Communication I’OtOCOl h Sical enCOdin Model A specific model adhering to a language RFCXXXX, Yang
: p) p y g’ fragment,
security SOLXXX, AAI
. . Model
- Model contract: signature of the operations, , =
Instance Data Data which conforms to a model Service Instance,
data types etc supported by the API configuration

data

Capability models encompass the behavioural contract and the model contract

1 THELINUXFOUNDATION

Contract Testing

Do you set your house on fire to test your smoke alarm? No, you test the c
contract it holds with your ears by using the testing button. >

https://docs.pact.io/

In the Zoo App (consumer) project

Contract testing is a way to ensure that services (such as an API
provider and a client) can communicate with each other.
Without contract testing, the only way to know that services
can communicate is by using expensive and brittle integration
tests. i

1. Start with your model

Imagine a model class that looks something like this. The attributes for a Alligator live on a remote server,
and will need to be retrieved by an HTTP call to the Animal Service.

:::::

def == other

A contract is between a consumer (for example, a client that
wants to receive some data) and a provider (for example, an L e
APl on a server that provides the data the client needs).

2. Create a skeleton Animal Service client class

Perhaps we have an Animal Service client class that looks something like this (please excuse the use of

httparty):
Proposal:
* pick a component and API and PoC this approach
* Define principles to apply across the board

Yet to be implemented because we're doing Test First Development...
end
end

A\ |
1 THELINUX FOUNDATION sDNAP 5

EN NETWORK AUTOMATION

https://docs.pact.io/
https://dius.com.au/2014/05/19/simplifying-micro-service-testing-with-pacts/

ONAP Actors

— Deploy and Upgrade ONAP
System

— Modify System Configuration

— Deploy, Upgrade, Remove
vendor-specific Models and
Applications on ONAP

Release

ONAP

Developer \

- Qw

ONAP
Administrator

— Develop ONAP features

1 THELINUXFOUNDATION

(I‘I)

O

N
ONAP User /
Network
Administrator

ONAP System

Onboard new and Upgraded Network Functions,
slices and services

Design, Deploy and Upgrade Network Slices and
Services

Define new Service and Function types by
deploying new models

Define External Systems that ONAP can use in the
creation / management of network services

Position Statement:

A model driven system
enables post-development
enhancement and
customisation by users and /
or administrators

@ ONAP s

OPEN NETWORK AUTOMATION PLATFORM

Domain Driven Design and Information Modelling

Common Information Model

_.r"---- I
Domain 1| - A% Domain 2
/ A | # &
Py '

|—p3 || pa |

LPs |

1 THELINUXFOUNDATION

As the domain being modelled grows in scope and complexity
it becomes progressively harder to align on a single unified
model

Domain Driven Design divides a large system into Bounded
Contexts, each of which can have its own unified model

Each Bounded Context could have unrelated concepts but also
related concepts such as a managed function or a service.

A Common Information Model defines the related concepts
that tie the contexts together, while each context can evolve its
own concepts independently

Each domain can select appropriate persistence
technolog[y|ies] according to the characteristics of the data

[N

I OPEN NETWORK AUTOMATION PLATFORM

Modelling Principles

Generic Models Domain Models Extending Models

General General

1
1

|§ Entity |

Commands Commands

Major Major

Relationship

[}
L

Commands Commands

| Entty | Captain Captain

i
L

Commands Commands

Sergeant Sergeant

r
I

Commands Commands Commands Commands Commands

Commands Commands

e

Private

i

Private

i5345 is a isa i5$

Captain [Sergeant } [Spy] { Corporal] [Private } [Gen

?

isa

[Captain [Serg eant] [SDS"] [CDFDO ral] [Private] [General] General MBJOI' S
A1 THELINUX FOUNDATION '© ONAP s

‘ ‘ OPEN NETWORK AUTOMATION PLATFORM

Model Driven Maturity Levels

e Level 0: not model driven
e Core concepts are hard-coded everywhere, human-readable documentation and definitions
exist to support developers

* Level 1: defined “data / information” model
* Machine-readable common model that is shared / used by developers

* Level 2: extensible “data / information model”
e Ability to deploy new models to modify the behaviour of the system at runtime

1 THELINUXFOUNDATION

Model Extensibility — Use Case

* Asan ONAP [User|Administrator] | want to create a Closed Loop
with a policy based trigger to create a trouble ticket in the network
operator’s trouble ticketing system.

* To create the trouble ticket | need to represent the trouble
ticketing system as an external system

* | also need to create a representation of the trouble ticket itself
and relate this to the trouble ticketing system and the faulty NF

* Today this requires a code update to 2-3 files in AAl schema
repository plus a rebuild
* Is this the wanted position (dev-ops model)?
* OR: do we define a generic type and allow “free-form” data to
be interpreted by the consuming service?
* OR: would it be preferable to manage / deploy these model(s)

as separate artefact(s)
https://wiki.onap.org/display/DW/AAl+Tutorial-Making+and+Testing+a+Schema+Change+-+Dublin

1 THELINUXFOUNDATION

‘ NFVQ ‘ ‘ VNFM ‘ ‘ EMS ‘

‘ External System

Thirdparty SDNC System

‘ Trouble Ticket ‘

1 LINUX FOUNDATION COLLABORATIVE PROJECTS

@©.ONAP

OFEN NETWORK AUTOMATION FLATFORN

Code Review / aai / schema-service.git / commitdiff

summary | shortlog | log | commit | commitdiff | review | tree
raw | patch | inline | side by side (parent: 85a4c19)

Add NFVO external-system in AAl gzezsozg
auther udhaya chandran <udhayachandran.m@verizon.com>
Thu, 21 Mar 2819 @88:20:13 +8280 (11:50 +@53@)
committer udhaya chandran <udhayachandran.mg@verizon.com:
Thu, 21 Mar 2819 16:49:23 +0280 (20:19 +853@)

Change-Id: I71681188d47fe3de71lddbc@7a4c54db7b39E8F528
Signed-off-by: udhaya Chandran <udhayachandran.m@verizon.com»
Issue-ID: AAI-2203

aai-schema/src/main/resources/onap/aai_schema/aai_schema_v16.xsd patch | blok | history
zai-schemassroc/main/resources/onap/dbedgerules /v16/DbEdgeRules_esr_vle.json

aai-schema/src/main/resources/onap/oxm/v16/aai_oxm_v16.xml

patch | blob | history
patch | blob | history

@ ONAP =«

EN NETWORK AUTOMATION Pl

https://wiki.onap.org/display/DW/AAI+Tutorial-Making+and+Testing+a+Schema+Change+-+Dublin

Next Steps ...

* Receive feedback
» Align and formalise the language and concepts
 Amend the architecture principles to cover model driven aspects

» Investigate what additional information we need to capture in the
ONAP architecture description

* Investigate what changes are required to ONAP to achieve our vision over
time

1 THELINUXFOUNDATION

