
Architectural Implications of a Model Driven ONAP



2

Aims

• Recap / expand on presentation in San Jose
• From an architectural perspective, what do we mean by “model 

driven”?

• What level of “model-driven” do we want to achieve?

• Example use case

• Discussion



3

Model Driven Systems

Models can be defined at various stages in the lifecycle of a system

• Capability Models

- Describe the capabilities and protocol of the interface exposed 
by the component / system

• REST API

• Event topic / queue

• Extension Models

- Provide a means for system administrators to extend the 
behaviour of a component / system by adding models at 
runtime

• Additional REST resources, event types

• Are there examples of this in ONAP?

• User Models

- Deployed by users of the system to modify the behaviour of 
the system

• Service descriptors, YANG network resource models, 
blueprints



4

Capability Models and Interfaces

• Interfaces between services are contracts. 
Interfaces comprise of a number of aspects:

- Behavioural contract: what happens when 
an operation on an API is invoked

- Protocol contract: transport / 
communication protocol, physical encoding, 
security

- Model contract: signature of the operations, 
data types etc supported by the API

Concept Description Example

Schema 
Language

Governs the syntax and semantics of elements and 
attributes

XSD, ASN.1, 
YANG, OpenAPI
Specification, AAI 
Schema

Model A specific model adhering to a language RFCXXXX, Yang 
fragment, 
SOLXXX, AAI 
Model

Instance Data Data which conforms to a model Service Instance, 
configuration 
data

Model Contract Concepts

Capability models encompass the behavioural contract and the model contract 



5

Contract Testing

https://docs.pact.io/
Contract testing is a way to ensure that services (such as an API 
provider and a client) can communicate with each other. 
Without contract testing, the only way to know that services 
can communicate is by using expensive and brittle integration 
tests.

A contract is between a consumer (for example, a client that 
wants to receive some data) and a provider (for example, an 
API on a server that provides the data the client needs).

Proposal:
• pick a component and API and PoC this approach
• Define principles to apply across the board

Do you set your house on fire to test your smoke alarm? No, you test the 
contract it holds with your ears by using the testing button.

https://docs.pact.io/
https://dius.com.au/2014/05/19/simplifying-micro-service-testing-with-pacts/


6

ONAP Actors

ONAP System

ONAP 
Administrator

ONAP User / 
Network 

Administrator

— Deploy and Upgrade ONAP 
System

— Modify System Configuration

— Deploy, Upgrade, Remove 
vendor-specific Models and 
Applications on ONAP

— Onboard new and Upgraded Network Functions, 
slices and services

— Design, Deploy and Upgrade Network Slices and 
Services

— Define new Service and Function types by 
deploying new models 

— Define External Systems that ONAP can use in the 
creation / management of network services

ONAP 
Developer

— Develop ONAP features

Binary 
Release

Position Statement:

A model driven system 
enables post-development

enhancement and 
customisation by users and / 

or administrators



7

Domain Driven Design and Information Modelling

As the domain being modelled grows in scope and complexity 
it becomes progressively harder to align on a single unified 
model

Domain Driven Design divides a large system into Bounded 
Contexts, each of which can have its own unified model

Each Bounded Context could have unrelated concepts but also 
related concepts such as a managed function or a service.

A Common Information Model defines the related concepts 
that tie the contexts together, while each context can evolve its 
own concepts independently

Each domain can select appropriate persistence 
technolog[y|ies] according to the characteristics of the data



8

Modelling Principles

Generic Models Domain Models Extending Models



9

Model Driven Maturity Levels

• Level 0: not model driven
• Core concepts are hard-coded everywhere, human-readable documentation and definitions 

exist to support developers

• Level 1: defined “data / information” model
• Machine-readable common model that is shared / used by developers

• Level 2: extensible “data / information model”
• Ability to deploy new models to modify the behaviour of the system at runtime



10

Model Extensibility – Use Case

• As an ONAP [User|Administrator] I want to create a Closed Loop 
with a policy based trigger to create a trouble ticket in the network 
operator’s trouble ticketing system.

• To create the trouble ticket I need to represent the trouble 
ticketing system as an external system

• I also need to create a representation of the trouble ticket itself 
and relate this to the trouble ticketing system and the faulty NF

• Today this requires a code update to 2-3 files in AAI schema 
repository plus a rebuild

• Is this the wanted position (dev-ops model)?
• OR: do we define a generic type and allow “free-form” data to 

be interpreted by the consuming service?
• OR: would it be preferable to manage / deploy these model(s) 

as separate artefact(s)
https://wiki.onap.org/display/DW/AAI+Tutorial-Making+and+Testing+a+Schema+Change+-+Dublin

https://wiki.onap.org/display/DW/AAI+Tutorial-Making+and+Testing+a+Schema+Change+-+Dublin


11

Next Steps …


