
ONAP API Fabric (API GW) Proposal

Proposed by : NetCracker Technology
Supported by : Vodafone, Swisscom, Verizon

12th June 2019

Agenda

• Problem Statement

• Proposal

• Usage Scenarios

• Discussion Summary So far & Suggested Next Steps

What we improved from previous presentations

1. Renamed the project to avoid confusion with individual views on API GW or Service Mesh or Anything
Else which is planned

2. Focus on the concept/solution scope than where/how it is implemented

3. Added Use Cases to explain the possible scenarios where the proposed solution is useful

4. Added suggested next step - Discussions can continue in parallel

Problem StatementSection 1

ONAP Component Dependency Matrix

Do we need to expose this
dependency to end user, use case
developer, component developer ?

Can we hide it behind an abstraction
layer ?

Problem Statement

Production deployments might
require interoperability with

legacy and 3rd Party
components

Standard Alignment is a
priority in ONAP

Complexity of APIs : Fine-
Grained APIs exposed for

consumption

• Need for an API abstraction
/façade layer rather than point to
point integration with each
component

• Capability to compose APIs
exposed by different components
at different levels of abstraction
and integration with 3rd party ,
External/Internal Components

• Enhancing multiple components
for standard API alignment is time
consuming

• Redundant API adaptation logic
across different components that
cannot be reused – e.g. SOL003
adaptor in SO , VFC and SDNC

• Overhead on project teams to
manage standard
adaptation/abstraction than core
functionality

• Each component exposes fine
grained capabilities, not all will be
necessary always and might
confuse the business consumer.

• API consumer need to depend on
the fine-grained component level
API intricacies, Entity model
rather than what is necessary and
sufficient (hiding the complexity)

• Cross dependency between
components require enrichment
through multiple API calls

Evolution of Platform
functional capability vs.

Use Case capability:

Platform need to evolve
independently, not strictly
based on use cases:

• Missing an appropriate facade
layer to isolate these two needs

• Use cases typically expect
standard/composite APIs for
wider acceptance and adoption,
project specific API alignment
roadmap not completely in sync
with use cases and delay the use
case development.

ProposalSection 1

API Fabric : Solution Guideline

Use Case Specific Simplified APIs exposed ,
different abstraction levels

Consistent API Management ,Security, Identity,
Composition , Policy control

Transformation , Adaptation, Enrichment – Used for
Standard API adoption

Existing ONAP Component Level Fine-grained APIs

Leverage
tool sets
from Open
Source

Build or
Reuse
from
ONAP

Backend Separated from
Consumption Layer – Backend
can evolve independently

A
P

I F
ab

ri
c

Handle common API transactional requirements at Façade, Focus on integration of adaptation logic in Mediation

What is being proposed ?

- Create level of abstraction over component level APIs (façade) so that ONAP capabilities

can be consumed easily without knowing how it is implemented internally

• Analogy : ONAP CLI (user need not know the complexities of ONAP Component level APIs), Ext-API (user just need to

know the standard TMF APIs to work with ONAP)

- Mediate and Adapt the APIs to desired format

• Patterns for adaptation are more or less same. Ease Standard API Adaptor development, Integration with third party

solutions, composition of ONAP APIs to a more consumable format etc.

- Enable ease of ONAP capability consumption

• Does not differentiate internal or external consumption – objective is to ease any type of consumption

- Set of reusable tool set to manage APIs, Develop Adaptors, Manage Consumption

A centralized function that acts as an API Fabric that consists of toolsets to create Facades, and

enablers/plugins to mediate API across different logical layers .

Proposal: API Fabric

FEATURES:

• Facilitate development of Façade APIs

• Consolidates Façade API Management in a
single logical function

• Augments Integration Layer capabilities in
ONAP

• Reuse API Routing Functions available in
MSB

• Supports Plugin model to attach request and
response transformation logic

• Offload common API tasks from other ONAP
Components

API FabricProposed Functionality

MSB / DMaaP

MSB / DMaaP

ONAP
Component

ONAP
Component

ONAP
Component

ONAP
Component

ONAP
Component

ONAP
Component

API Fabric Solution Scope

API Façade

• Model Driven API Management – Swagger import, LCM
management (version, canary, artifacts/plugin association)

• API Composition toolsets – HTTP Callout and aggregation

• Integration with ONAP specific or external Auth Provider

• API Marketplace , Subscription Management, Plan
Management

• API Policy Management – RBAC, Tenancy, Rate Limit,
Quota, Circuit Break

• Documentation Tools

• Input Validation

API Mediation

• Script insertion – Groovy, Python or Custom

• Business logic insertion – Plugin SDK

• Transformation templates – JOLT , Velocity

• Expression Language – Query strings , Regular
expression support

• Alert Generation and Control loop support

• Runtime Mediation Control

• Flexibility to support API variance – SOAP, REST,
GraphQL, gRPC, XML, JSON

Common (including non-functional)
• API Monitoring, Metrics Collection, Analytics

• Cloud native friendly - Distributed, Microservice based,
Scalable

• API Sharding , Canary Support

• Low Maintenance overhead

• Developer friendly toolsets , Low effort

Usage ScenariosSection 3

ONAP API Fabric : As an API Consumption Layer

Internal to

ETSI SOL003

SOAAISDC AAF

Centralized API Routing,
Policy, Security,
Transformation
Management

Client App specific

Facade API to Internal

UUI Portal VID

Partner API Routing

API Fabric

Policy

Partner

ONAP

Optional

Optional

Multi-Cloud

OOM

Use Case Specific

App extensions

Initial API
Config

MSB, DMaaP, Service Mesh etc.

TMF APIs

Mediation

ETSI SOL005

Adaptation/Routing

VFC

Ext-API

“Use the façade pattern when you want to provide a simple interface to a complex subsystem. Subsystems often get more
complex as they evolve.” - Design Patterns – Elements of Reusable Object-Oriented Software

API Fabric as a Standard API Abstraction Layer

SO

Ext-API

SDNC/
AppC

API
Fabric

A&AI

MSB/
DMaaP

SDC

VFC

SO
L0

0
3

VNFM

OSS/BSS

AAF
SO

L0
0

5

1

2

Service/NF
Descriptor
Distribution

2

2

Service Descriptor Distribution

3 VNF Descriptor Distribution
3

4

5

6

7

8

9

10
11

Service Order

Auth

SO NBI

Inventory update

Resource
Assign

VNF Instantiation

12

14

13

SOL005 to SO NBI
Transformation

SOL005 pass
through

NFVO

API Fabric as a generic Façade

vCPE Service API

Façade

TMF Open API

Façade
ONAP Administration

API Façade

PNF Mgmt API

Façade
ETSI API

Façade
API Fabric

Ext-APISOSDC OOM

A&AI

SDNC

MSB/DMaaP

VFC

Consumption Layer – Business Apps , OSS/BSS

API Fabric: As an Inter-Operator API Interaction Enabler with Security and Policy
Management

OSS/BSS OSS/BSS

SP Domain Partner Domain

MEF SONATA

ONAP

API Fabric

MEF LEGATO

MEF LSO ICM MEF LSO ECM

MEF PRESTO

MEF ALLEGRO

Customer Inter-Operator API

Fabric

Service Management ,
Enforce Policies between
SP/Partner

Product Management ,
Business Contracts
Exchanged

API Fabric acting like inter provider
exchange (Optional)

MEF SOF

MEF LEGATO

MEF LSO ICM

MEF LSO ECM

MEF INTERLUDE
MEF INTERLUDE

API GW enforces Policies between
partners and also exposes APIs for
each functional block

MEF ADAGIO

MEF ADAGIO

MEF PRESTO

API Fabric: As a Tenancy Management Enabler, ONAP As a Service

Cloud hosted ONAP

API Fabric

Plan for Op Co 1 Plan for Op Co 2
Plan for App

Vendor

API
Marketplace/
Catalog

API 1 API 2 API 3 API n
API Fabric Exposes ONAP
as a Service

API Plans are
created for each
Tenant

Consumer 1 Consumer 2 Consumer n

API Fabric can be
distributed and
APIs can be
shard’ed to serve
different Tenants

Consumers Subscribe to API
Plans

Public or Private Cloud

API Fabric : Interwork with multiple authentication providers and
enable security mechanism

Consumer 1 Consumer 2 Consumer n Consumers Subscribe to API
Plans

API Fabric

ONAP AAF

Operator Auth Provider

(Cert Man, OAuth2 Auth

Server, LDAP/IDP)

Open ID Provider

Other ONAP Components

3rd Party Solution

(VNFM, SDNC,

EMS etc)

Consistent Security Mechanism
for Consumers

Security adapted for
3rd Party Supported
mechanism

API Fabric : RBAC Enabler

A
P

I F
ab

ri
c

API Fabric

Role of API Fabric in the
Verizon proposal for RBAC

API Fabric : As an Edge Proxy

Central ONAP

Edge ONAP

Site API

Fabric
Partner Edge

Site API

Fabric

Edge Akraino Stack

Site API

Fabric

Application

Provider

API GW acts like an anchoring
point between Central and Edge

Sites

Local API Fabric

API GW acts like an enabler for App
providers to offer Value Added
Services and maintain a
monetization channel

OSS/BSS

API Fabric : Enabler for API Composition and Patterns

API Fab SDC/AAI

SO

Service Order Composite API Call

Get Service
Model

Create Service
Instance

Get Operation ID,
Instance ID

Single API call on API GW results in multiple atomic API calls in the
backend. All atomic API calls chained in API GW through
Configuration. Intermediate state and context cached in between
atomic API calls

API Fab

Register Listener
with Call back API
URL

DMaaP SO

Polling

Application

Asynchronous
Notification

API GW used for Asynchronous Notification (Hub Resource
Management)

Similar pattern followed in SOL003, Ext-API TMF APIs and SOL005.

Discussion Summary So Far &
Next Steps

Section 1

Next Steps (Require Feedback from Community)

• Develop a PoC that showcase the façade API and API Mediation capability

- Show a demo in the E time frame (Select one of the use cases, Suggested use cases

in next two slides)

- Can be based on multiple technologies depending on resource availability

(sequentially or in parallel)

- Showcase the merits , demerits from developer, end user point of view

• Selected technology option to get into E Release as experimental feature

• Formalize the PoC as part of a project or use case during F Release

timeframe

• API Fabric Exposing two types of interfaces

• Simplified internal API which hides SOL003/Vendor complexity

• Pure SOL003 (without VNFM specific extensions)

• Use Case

• Case 1) ONAP Component wants to use Simplified API for VNF
instantiation

• Case 2) ONAP Component supports pure SOL003 API but not aware
of vendor extensions

• Operation

• Case 1: API Fabric takes care of transforming simplified internal API
to corresponding multiple API calls - SOL003 specific or Vendor
specific APIs

• Case 2: API Fabric receives pure SOL003 request and enriches the
request with vendor specific SOL003 extended parameters

Proposed Use Cases 1/2

Scenario 2 :

Dynamic Routing and Request/Response Transformation
for SOL003 API

Scenario 1:

Dynamic Routing and Request/Response Transformation
for SOL005 API

• API Fabric Exposing two types of interfaces

• Simplified internal API which hides SOL005 API or API exposed by
external NFVO

• Pure SOL005 which can be used for integration with OSS/BSS

• Use Case

• Case 1) ONAP Component wants to access an External NFVO for
LCM operation (sub domain)

• Case 2) ONAP Component wants to work with a component
internal/external via SOL005 API

• Operation

• Case 1: API Fabric takes care of transforming the simplified internal
API to corresponding API calls to external NFVO APIs

• Case 2 : API Fabric receives SOL005 API calls and
enriches/transforms the API with internal/external API call

Proposed Use Cases (Any one to start with) 2/2

Scenario 3:

Security Enablement for External API supported TMF APIs

• Support Oauth 2.0 based Authentication/ Authrorization Support
Token based authentication – with API Fabric acting as a mediator
or Authorization Server

• Short Term : Support Auth Grant based on – Implicit ot
Client Credentials

• Long Term : Support Auth Code, PKCE, Token based
Authentication, Open ID based Authentication

• Support integration with AAF as Auth Provider

• Control the API calls using Scope

• Support Role based Access Control

• Enable HTTPS based secure channel between OSS/BSS and ONAP
Ext-API

How the proposal differs from existing ONAP Functions ?

• MSB API GW has limited capabilities to support
API Façade

• MSB Primarily supports Routing and Discovery.
Tool set for API Composition and Management
missing

• External API limited Mediation and Façade
capability

• Purpose built for TMF without much reuse for
other API facades

• No gateway, Transformation, Composition
toolsets.

Proposed function combines both the functional capabilities and
key enabler is a set of toolsets for reusing the same for multiple
use cases, not limiting to MSB or Ext-API

MSB

Ext-API

Thank You

