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Abstract—Virtualization is the mechanism of creating virtual
representations of physical resources. It is now integrated into
almost every facet of computing and is pervasive on the Internet:
ranging from data center services and cloud computing services
to services on our phones. The common goal for virtualization
providers is to ensure that the physical resources are managed
efficiently and effectively. This goal induces the Virtual Network
Embedding (VNE) problem: the task of properly allocating the
physical resources of a network to satisfy virtual requests for
resources under various constraints while ensuring the quality
of service and maximizing resource utilization. The VNE problem
captures many resource allocation tasks arising in computer sys-
tems and computer networks. In this paper, we present Improved
VNE-CBS (iVNE-CBS) as an efficient and effective algorithm for
solving the VNE problem. iVNE-CBS builds on Conflict-Based
Search (CBS), a heuristic search framework borrowed from
the Multi-Agent Path Finding literature. We show that iVNE-
CBS significantly outperforms popular baseline VNE algorithms:
it scales to networks with several hundreds of vertices and
thousands of edges, while also producing better-quality solutions.

Index Terms—network virtualization, virtual network embed-
ding, conflict-based heuristic search

I. INTRODUCTION

Virtualization is a mainstay in the modern computer and
networking ecosystem. It enables the mobilization of resources
as services, often referred to with the ‘as a service (aaS)’
suffix. Examples include Infrastructure aaS (IaaS), Platform
aaS (PaaS), Service aaS (SaaS), and Bare-Metal aaS (BMaaS).
Through virtualization, users obviate the necessity to operate
resources directly, reducing the capital and operating costs
in a shared environment that has many users and many
kinds of resources. Internet Service Providers (ISPs) can use
virtualization to provide Virtual Network Functions (VNFs)
and network slices to their customers, facilitating access to the
Internet with various Quality of Service (QoS) requirements.
This capability serves 5G Networks and Network Slice as a
Service (NSaaS), as described in the 3GPP standard [1].

While virtualization provides a “logical” representation of
physical resources leading to many benefits, it introduces
an orchestration problem: the physical resources have to be
managed efficiently and effectively in a shared environment
that has many users and many kinds of constraints. This is
often referred to as the Virtual Network Embedding (VNE)
problem. It is essentially the task of properly allocating the
physical resources of a network to satisfy virtual requests for
resources under various constraints while ensuring the quality
of service and maximizing resource utilization.

The VNE problem can also be understood as having to
satisfy the requirements of a Virtual Network Request (VNR)
by allocating the physical resources of a Substrate Network
(SN) to it. A VNR is a graph in which vertices represent
logical compute nodes and edges represent logical communi-
cation links between pairs of compute nodes. A proper VNE
embedding of a VNR onto an SN allocates CPU resources
from the physical compute nodes of the SN to each of the
VNR vertices and bandwidth resources from the physical com-
munication paths in the SN to each of the VNR edges while
satisfying various CPU and bandwidth capacity constraints.

The VNE problem captures many resource allocation tasks
arising in computer systems and computer networks. In the
5G environment, a customer could request a network slice
to support 5G Ultra-Reliable Low Latency Communications
(URLLC), specifying the slice ingress to be a certain Ra-
dio Access Network (RAN) and the slice egress to be a
certain Point Of Presence (POP). The task of the network
administrator is to efficiently construct the slice across their
network, provide QoS guarantees of the requested URLLC,
and effectively manage the network resources to maintain the
current slice and admit new ones. This task is exemplary of
the VNE problem in 5G networks.

The VNE problem is essentially a combinatorial problem
that models the proper management of shared resources on
a network. It is NP-hard to solve optimally [2]. Previous
works on the VNE problem have developed various kinds
of algorithms. However, many of these algorithms either pro-
duce low-quality solutions, are unable to scale to large VNE
instances, and/or do not have strong theoretical properties.
VNE-CBS [3] is a recent solver that has been developed to
address these drawbacks. It bears both the advantages of being
a complete solver and producing optimal solutions. VNE-CBS
also empirically outperforms other popular VNE algorithms.

VNE-CBS is inspired by the success of the Conflict-Based
Search (CBS) framework in the Multi-Agent Path Finding
(MAPF) domain. In the MAPF problem, multiple agents are
required to plan collision-free paths in a shared environment
with obstacles [4]. Combinatorially, both the MAPF and VNE
problems can be viewed as constrained path-coordination
problems. Therefore, the heuristic search techniques that work
well in one problem domain can be imported to the other.
However, the two problems are different in subtle ways.
First, the MAPF problem has a temporal dimension that is
absent from the VNE problem. Second, the MAPF problem



dominantly has mutual exclusion constraints between pairs of
agents, whereas the VNE problem dominantly has capacity
constraints on the CPU and bandwidth resources. Therefore,
the crossover of heuristic search techniques between the two
problem domains requires careful adaptation.

VNE-CBS is a CBS-based algorithm that is carefully
adapted to the VNE problem. Similar to CBS for MAPF, it
is a two-level search algorithm. The high-level search is a
best-first search that resolves conflicts arising from resource
contentions. The low-level search is a path-finding algorithm
that allocates resources to each VNR vertex and edge under
the constraints imposed by the high-level search node.

In this paper, we improve on VNE-CBS and present
Improved VNE-CBS (iVNE-CBS). Compared to VNE-CBS,
iVNE-CBS draws more power from the CBS literature in the
MAPF domain. It incorporates various CBS enhancements
whose effectiveness has been recently demonstrated in the
MAPF domain. This includes disjoint splitting and bypassing
conflicts in the high-level search and conflict avoidance tables,
true cost heuristics, and more efficient duplicate detection in
the low-level search. With these enhancements, iVNE-CBS
has the following properties: On the theoretical front, it retains
the completeness of VNE-CBS and its guarantee to produce
optimal solutions. On the experimental front, it efficiently
solves VNE instances that are significantly larger than those
presented in previous VNE literature. It easily outperforms
VNE-CBS and other baseline VNE algorithms both in terms
of efficiency and solution quality.

II. BACKGROUND

In this section, we present some background literature on the
VNE problem and the CBS framework in the MAPF domain.

A. Virtual Network Embedding

The VNE problem is a constrained resource allocation
problem. It defines the task of allocating resources to VNR
vertices and edges by mapping them to SN vertices and
paths, respectively. The vertex mapping allocates compute
resources, such as CPU resources, from the SN vertices to
the VNR vertices. The edge mapping allocates communication
resources, such as bandwidth resources, from the SN paths to
the VNR edges. These mappings are required to satisfy various
constraints, such as: (a) For each SN vertex, the sum of the
CPU requirements of all VNR vertices mapped to it should be
no greater than its available CPU capacity. (b) For each SN
edge, the sum of the bandwidth requirements of all VNR edges
that utilize it should be no greater than its available bandwidth
capacity. Additional constraints may also be used on the VNE
mapping. For example, each VNR vertex may be constrained
to be mapped to an SN vertex within a certain geographical
distance from a preferred geographical location, such as a data
center. Another constraint that is popularly imposed on the
VNE mapping is to assign different SN vertices to different
VNR vertices from the same VNR [5].

The VNE problem is known to be NP-hard [6]. Even
with a given VNR vertex mapping, the problem of optimally

embedding VNR edges to SN paths is still NP-hard [7], [8].
This makes the VNE problem and its more expressive variants
hard to solve in general.

The VNE problem arises in both offline and online settings.
In the offline version of the VNE problem, the set of VNRs to
be independently embedded in the SN is known in advance.
In the online version, the VNRs arrive in sequence at different
times and stay in the network for an arbitrary duration of time.
In this case, reconfiguration may be necessary, i.e., it may be
necessary to backtrack on the embedding assignments made
for past VNRs to be able to accommodate new VNRs when
they arrive. Moreover, in the online version, multiple VNRs
may hold network resources simultaneously and, therefore,
VNR vertices from different VNRs are allowed to be mapped
to the same SN vertex.

There are many quality metrics on a VNE mapping. These
include the revenue, the cost, and the acceptance ratio. While
the revenue quantifies the total resources demanded by a
successfully embedded VNR, the cost quantifies the total
resources meted out to it by the VNE mapping. The revenue
depends only on the VNR (provided that it is successfully
embedded) but the cost depends on the VNE mapping. In both
the online and offline settings, the acceptance ratio quantifies
the fraction of successfully embedded VNRs among the total
number of VNRs. A popular objective is to maximize the
acceptance ratio while minimizing the cost.

Many algorithms have been proposed to solve the VNE
problem and its variants. A compendium of existing algo-
rithms can be found in several survey articles [9], [10]. VNE
algorithms that use mathematical optimization usually model
the VNE problem with Mixed Integer Programming (MIP) or
Integer Linear Programming (ILP). For example, the D-ViNE
and R-ViNE algorithms use deterministic and randomized
rounding techniques, respectively, to extract a solution from
a Linear Programming (LP) relaxation of an MIP model [11].

VNE algorithms that use node ranking map VNR vertices
to SN vertices greedily according to various heuristics. Sub-
sequently, the VNR edges are mapped to SN paths using
regular shortest path or multi-commodity flow computations.
For example, G-SP and G-MCF are two such algorithms [2].
Another suite of algorithms are inspired by Google’s Page
Rank algorithm [12]. These algorithms use the Markov Ran-
dom Walk model to rank VNR and SN vertices based on their
resources and topological attributes. A subsequent matching
process utilizes these ranks.

B. Multi-Agent Path Finding

The MAPF problem is specified by an undirected un-
weighted graph G = (V,E) and a set of k agents {a1, ..., ak},
where ai moves from a start vertex si ∈ V to a goal vertex
gi ∈ V . Time is discretized into timesteps. At each timestep,
each agent can either move to an adjacent vertex or wait at its
current vertex, both with unit cost. A path of ai is a sequence
of move and wait actions that lead ai from si to gi. A vertex
conflict (ai, aj , v, t) occurs when ai and aj are at the same
vertex v at timestep t. An edge conflict (ai, aj , u, v, t) occurs



when ai and aj traverse the same edge (u, v) in opposite
directions between timestep t and t+1. A solution to a MAPF
problem is a set of paths without conflicts. One common
objective is to find a solution while minimizing the sum of
costs of all agents [13]. Solving the MAPF problem optimally
for this objective is NP-hard [14], [15]. Several variants of the
MAPF problem have been proposed to model different real-
world situations [4]. The MAPF problem and its variants have
many real-world applications, including in video games [16],
automated warehousing [17], and in multi-drone delivery [18].

C. Conflict-Based Search

CBS is a two-level heuristic search algorithm for solving
the MAPF problem optimally [13]. On the high level, CBS
performs a best-first search on a Constraint Tree (CT). Each
CT node N contains a set of spatiotemporal constraints
N.constraints that are used to coordinate agents to avoid
conflicts. Each CT node has a set of paths N.paths, one for
each agent, that respects the constraints. The cost of a CT
node N is the sum of the costs of paths in N.paths. The
root CT node contains an empty constraint set and a set of
shortest paths that may contain conflicts. When CBS expands
a CT node, it first checks for conflicts in its paths. If there
are none, the CT node is a goal CT node and CBS returns
the paths as the solution. Otherwise, CBS chooses one of the
conflicts and resolves it by splitting into two child CT nodes,
each with an additional constraint prohibiting one agent from
the conflict from using the conflicting vertex or edge at the
conflicting timestep. If the path of the agent does not satisfy
the new constraint, CBS uses its low-level search (e.g., A*) to
replan the path. The fewer conflicts there are to resolve, the
faster CBS terminates. A complexity analysis of CBS has been
presented in [19]. CBS guarantees completeness by eventually
exploring both ways of resolving each conflict and optimality
of the generated solution by performing best-first search on
both its high and low levels.

However, since solving a MAPF problem optimally is
hard, suboptimal solution procedures can be investigated to
increase the runtime efficiency. Enhanced CBS (ECBS) has
been developed to produce suboptimal solutions in the CBS
framework by trading the solution cost for runtime [20]. ECBS
utilizes the power of a bounded-suboptimal search algorithm
called focal search. Focal search maintains two lists of nodes
OPEN and FOCAL. OPEN is the regular open list, like in
A*, whose nodes n are sorted by an admissible cost function
f(n) = g(n) + h(n) where h(n) is an admissible heuristic
function. Let w > 1 be a user-specified suboptimality factor
and fmin = minni∈OPEN f(ni) be the minimum f -value in
OPEN. FOCAL contains the nodes n in OPEN for which
f(n) ≤ w ·fmin, sorted by a secondary heuristic function d(n)
(that can be inadmissible) that estimates the number of hops
from node n to a goal node. Unlike A*, focal search always
expands a node n with the minimum d-value in FOCAL. Let
C∗ be the optimal solution cost. Focal search guarantees that
the returned solution cost is at most w · C∗ since fmin is a
lower bound on C∗. ECBS is a bounded-suboptimal variant

of CBS whose high-level and low-level searches are both
focal searches. Both these searches use measures related to
the number of conflicts as the secondary heuristic function
d(n). ECBS(w) refers to ECBS with the user-specified factor
w to be used in its focal searches. ECBS(w) is w-suboptimal
since it guarantees a solution with a cost that is no larger than
w times C∗ [20]. Thus, ECBS(w) with a reasonably small
value of w has the flexibility of expanding CT nodes with
fewer conflicts than the CT nodes chosen by CBS. This often
makes ECBS(w) faster than CBS.

III. PROBLEM FORMULATION

In this paper, we solve the VNE problem as defined in [11].

A. Substrate Network
We define an SN as an undirected graph Gs = (V s, Es),

where V s is the set of SN vertices and Es is the set of SN
edges. The attributes of an SN vertex vs ∈ V s include its CPU
capacity CPU(vs) and its location LOC(vs). The attribute of an
SN edge es ∈ Es is its bandwidth capacity BW(es). An SN
path is a path that involves multiple edges in Gs.

B. Virtual Network Request
We define a VNR as an undirected graph Gr = (V r, Er),

where V r is the set of VNR vertices and Er is the set of VNR
edges. The demands of a VNR vertex vr ∈ V r are its CPU
requirements CPU(vr), its preferred location LOC(vr), and the
maximum allowed distance D(vr) from its preferred location
to the location of the SN vertex it maps to. The popularly
considered demand of a VNR edge er ∈ Er is its bandwidth
requirement BW(er).

C. Virtual Network Request Mapping
Given a VNR Gr, a feasible VNE is a mapping VNE(·) of

VNR vertices to SN vertices and VNR edges to SN paths that
satisfies the following constraints.

For the vertex mapping of VNR vertices to SN vertices,
1) each VNR vertex vr ∈ V r is mapped to a unique SN

vertex VNE(vr) ∈ V s,
2) no two VNR vertices vri ∈ V r and vrj ∈ V r from the

same VNR are mapped to the same SN vertex vs ∈ V s,
and

3) for any VNR vertex vr ∈ V r:

CPU(vr) ≤ CPU(VNE(vr))

and

GEODIST(LOC(vr), LOC(VNE(vr))) ≤ D(vr),

where GEODIST(·, ·) is the function that calculates the
geographical distance between two locations.

For the edge mapping of VNR edges to SN paths,
1) each VNR edge (vri , v

r
j ) ∈ Er is mapped to an SN path

VNE((vri , v
r
j )) from VNE(vri ) to VNE(vrj ) in Gs, and

2) for any SN edge es ∈ Es:∑
er∈Er: es∈VNE(er)

BW(er) ≤ BW(es).



Fig. 1. An example embedding of two VNRs, VNR-1 and VNR-2, in an SN.

D. Objectives

We evaluate a feasible VNE mapping by its revenue and its
cost. The revenue of a VNE mapping is defined as∑

vr∈V r
CPU(vr) +

∑
er∈Er

BW(er), (1)

and its cost is defined as∑
vr∈V r

CPU(vr) +
∑

er∈Er

∑
es∈VNE(er)

BW(er). (2)

The VNE problem is to find a feasible VNE mapping, if
one exists, that minimizes the cost of the mapping since the
revenues of all feasible VNE mappings are identical.

E. Reformulating the VNE Problem to a Path-Coordination
Problem

The VNE problem can be interpreted as a path-coordination
problem after some reformulations [11].

We represent each VNR vertex vr ∈ V r as a fictitious
vertex vf ∈ V f in a graphical representation of the SN. Each
fictitious vertex vf ∈ V f inherits all attributes of the VNR
vertex vr, such as CPU(vr), LOC(vr), and D(vr). Each vf is
connected via fictitious edges (vf , vs) ∈ Ef to all SN vertices
vs ∈ V s that satisfy the geographical constraint

GEODIST(LOC(vf ), LOC(vs)) ≤ D(vf ).

Each fictitious edge has infinite bandwidth capacity and rep-
resents the vertex mapping of a VNR vertex to an SN vertex.
This new graph Gm is called the augmented graph, and a
VNE mapping is a set of paths on it. Its vertices are V s∪V f ,
and its edges are Es ∪ Ef . Each VNR edge (vri , v

r
j ) that is

mapped to an SN path can be traced on Gm with starting
and ending fictitious edges (vfi , v

s
1) and (vs2, v

f
j ), respectively,

where vs1, v
s
2 ∈ V s. Such a path on Gm cannot have any

other fictitious vertices or edges. The VNE problem can then
be interpreted as a path-coordination problem with CPU and
bandwidth constraints.

Fig. 1 shows an example of successfully embedding two
VNRs in an SN by reformulating the VNE problem as a path-
coordination problem. On the left side, it shows the two VNRs,
VNR-1 (in red) and VNR-2 (in blue). On the right side, it
shows the SN (in black) with additional fictitious vertices
and edges, as described for the construction of Gm. The
non-negative numbers annotating the VNR vertices and the

SN vertices represent their CPU requirements and capacities,
respectively. The non-negative numbers annotating the VNR
edges and the SN edges represent their bandwidth require-
ments and capacities, respectively. As described earlier, each
fictitious vertex represents a VNR vertex and is connected via
fictitious edges to the SN vertices that it can be mapped to.
This mechanism represents the geographical constraints. For
example, in Fig. 1, the VNR vertex C can be mapped to either
SN vertex 2 or 4 according to its geographical constraints.
VNR-1 has the vertex mapping: A-1, B-3, and C-2, and its
VNR edges A-B, A-C, and B-C are mapped to the SN paths 1-
3, 1-2, and 3-4-2, respectively. VNR-2 has the vertex mapping:
D-2 and E-4, and its VNR edge D-E is mapped to 2-4.

In general, for any feasible VNE mapping of a given VNR
in the SN, Eq. 2 indicates that the cost of the VNE mapping
depends on the allocated CPU and bandwidth resources. The
CPU resources allocated to the VNR vertices have to be
identical for all feasible mappings. However, the bandwidth
resources allocated to the VNR edges depend on how the
VNR edges are mapped to the SN paths. In particular, the
cost of mapping each VNR edge er ∈ Er is the bandwidth
requirement BW(er) multiplied by the length of the mapped
SN path. Thus, minimizing the cost of a VNE mapping is the
same as minimizing the sum of the lengths of the chosen paths
on Gm. In turn, this corresponds to the sum-of-costs objective
in the CBS framework.

IV. IVNE-CBS

The CBS framework was recently applied to the VNE prob-
lem [3]. The resulting solver, VNE-CBS, already outperforms
popular baseline methods. In this section, we further improve
VNE-CBS to iVNE-CBS using various enhancements to the
high-level and low-level searches. We begin by describing the
various kinds of conflicts that need to be resolved in the high-
level search of VNE-CBS.

In the high-level search, every CT node N contains a
VNE mapping N.mapping. The conflicts are constraints of
the VNE problem that are violated by N.mapping. A type-1
vertex conflict (vr, vs1, v

r, vs2) arises when a VNR vertex vr

is mapped to two different SN vertices vs1 and vs2. To resolve
it, two child CT nodes are created in the high-level search.
One of these enforces the negative constraint (vr, vs1) that
stops vr from being mapped to vs1, and the other enforces the
negative constraint (vr, vs2) that stops vr from being mapped
to vs2. A type-2 vertex conflict (vr1, v

s, vr2, v
s) arises when two

VNR vertices vr1 and vr2 from the same VNR are mapped to
the same SN vertex vs. To resolve it, two child CT nodes
are created in the high-level search. One of these enforces
the negative constraint (vr1, v

s) that stops vr1 from being
mapped to vs, and the other enforces the negative constraint
(vr2, v

s) that stops vr2 from being mapped to vs. A bandwidth
capacity conflict arises when a VNR edge er utilizes an SN
edge es that does not have sufficient bandwidth capacity to
accommodate BW(er). To resolve it, we take all VNR edges
in {er ∈ Er : es ∈ VNE(er)} and create a child CT node
for each such VNR edge with a new negative constraint that



stops it from utilizing es. For each newly added negative
constraint, the low-level search of VNE-CBS updates all paths
that either map a VNR vertex to a prohibited SN vertex or use
a prohibited SN edge in the mapping of a VNR edge.

In general, in the CBS framework, a CT node N also
contains the cost of the VNE mapping N.cost and the set
of constraints imposed by the high-level search N.constraints.
The geographical constraints are enforced while constructing
the augmented graph Gm and, therefore, are not duplicated
in N.constraints. A CT node N is a solution CT node if
N.mapping contains no conflicts.

A. Enhancements in the High-Level Search

In this subsection, we describe the two major enhancements
incorporated by iVNE-CBS in its high-level search. The first
one is referred to as disjoint splitting and the second one is
referred to as bypassing conflicts. Both of these have been
successfully used in the MAPF domain [21], [22].

1) Disjoint Splitting: Intuitively, the idea of disjoint split-
ting, first introduced in [21], is based on the observation that
when a conflict is resolved in the high-level search, the child
CT nodes may often have overlaps in their search spaces.
Disjoint splitting avoids this overlap by using a conflict-
resolution strategy based on constraint propagation. In this
paper, we apply disjoint splitting to efficiently resolve vertex
conflicts. It retains the completeness of iVNE-CBS.

Fig. 2 illustrates the application of disjoint splitting for
resolving vertex conflicts in the CBS framework for the VNE
problem. Here, VNR-3 contains three vertices and two edges
that need to be embedded in the SN shown below it. The next
panel shows a root CT node with a VNE mapping A-1-4-B and
A-3-5-C. It contains a vertex conflict (A, 1, A, 3), where the
VNR vertex A is mapped to two SN vertices 1 and 3. VNE-
CBS follows a non-disjoint splitting strategy for resolving this
conflict. In particular, it splits the root CT node N by creating
two child CT nodes, N0 with a negative constraint (A, 1)
and N1 with a negative constraint (A, 3). At N0, VNE-CBS
replans the path A-1-4-B to A-2-4-B since the original path
uses A-1, which is now prohibited by the newly added negative
constraint. Similarly, at N1, it replans the path A-3-5-C to A-2-
5-C. It splits N0 again to resolve the vertex conflict (A, 2, A, 3)
and creates two child CT nodes N00, where the first path is
replanned, and N01, where the second path is replanned. Both
N00 and N01 contain a feasible VNE mapping. Similarly, it
splits N1 to resolve the vertex conflict (A, 1, A, 2) resulting in
two child CT nodes N10 and N11. Both N10 and N11 contain
a feasible VNE mapping. However, CT nodes N01 and N10

have the same set of constraints {(A, 1), (A, 3)}. Thus, there
is a duplication of search efforts in the CT subtrees.

To avoid duplication of search efforts, we use the disjoint
splitting strategy, illustrated in the next panel. For a type-
1 vertex conflict (vr, vs1, v

r, vs2), we choose an SN vertex
vsk ∈ {vs1, vs2} randomly and create two child CT nodes, one
with a negative constraint (vr, vsk) stopping vr from being
mapped to vsk and one with a positive constraint (vr, vsk)

Algorithm 1 iVNE-CBS
1: Input: Gs, Gr, w
2: Gm ← create augmented graph for Gs and Gr

3: Precompute the true cost heuristic table h table
4: NR ← empty CT node
5: NR.constraints← ∅
6: NR.mapping← low-level paths found in Gm for all VNR

edges using the low-level search
7: NR.cost← cost(NR.mapping)
8: NR.num conf← number of conflicts in NR.mapping
9: OPEN = FOCAL = {NR}

10: while FOCAL ̸= ∅ do
11: costold ← OPEN.top().cost
12: NT ← FOCAL.top()
13: Remove NT from OPEN and FOCAL
14: if NT .num conf = 0 then
15: return NT .mapping as solution
16: Conf← first conflict found in NT .mapping
17: Cons← (disjoint splitting) constraints for Conf
18: for c ∈ Cons do
19: NC ← copy of NT

20: Add c to NC .constraints
21: Update low-level paths in NC .mapping to

accommodate constraint c
22: if update successful then
23: NC .cost← cost(NC .mapping)
24: NC .num conf← number of conflicts

in NC .mapping
25: if NC .cost ≤ w ·NT .cost and NC .num conf <

NT .num conf then
26: NT .mapping← NC .mapping
27: NT .cost← NC .cost
28: NT .num conf← NC .num conf
29: Discard all generated child CT nodes
30: Go to line 14
31: OPEN← OPEN ∪ {NC}
32: if NC .cost ≤ w · costold then
33: FOCAL← FOCAL ∪ {NC}
34: costnew ← OPEN.top().cost
35: for N ∈ OPEN do
36: if w · costold < N.cost ≤ w · costnew then
37: FOCAL← FOCAL ∪ {N}
38: return “No Solution”

forcing vr to be mapped to vsk. It is clear that the comple-
mentary negative and positive constraints do not allow for any
overlaps in the search efforts of the two subtrees. Similarly,
for a type-2 vertex conflict (vr1, v

s, vr2, v
s), we choose a VNR

vertex vrk ∈ {vr1, vr2} randomly and create two child CT
nodes, one with a negative constraint (vrk, v

s) stopping vrk
from being mapped to vs and one with a positive constraint
(vrk, v

s) forcing vrk to be mapped to vs. The disjoint splitting
strategy is different from brute force enumeration because of
its implications on the low-level search. In the subtree with a



Fig. 2. An example of finding a VNE mapping for VNR-3 in the CBS framework with non-disjoint splitting, disjoint splitting, and bypassing conflicts. The
first panel shows the VNR and the SN. The next panel shows the resolution of a vertex conflict in CT node N without using disjoint splitting. The two
solutions marked in red indicate a duplication of search efforts. A path marked in bold indicates a path updated according to the constraints imposed by the
high-level search. The next panel shows the resolution of the same vertex conflict using disjoint splitting. Here, redundant search efforts are avoided. The last
panel shows how a CT node can replace its parent CT node if it has fewer conflicts and qualifies for expansion. Some details, such as the CPU and bandwidth
resources, are omitted for simplicity.

negative constraint, the low-level search remaps the relevant
VNR vertex to a new SN vertex. In the subtree with a positive
constraint, the low-level search maps the VNR vertex to the
specified SN vertex and ignores all other possibilities.

In the figure, we observe that disjoint splitting uses a smaller
search tree. It starts with the same root CT node N and splits
on the vertex conflict (A, 1, A, 3) by creating two child CT
nodes N0 and N1 corresponding to VNR vertex A and SN
vertex 1. At N0, it replans A-1-4-B to A-2-4-B to satisfy
the newly added negative constraint (A, 1). At N1, it replans
A-3-5-C to A-1-4-3-5-C to satisfy the newly added positive
constraint (A, 1). It further splits N0 to resolve the vertex
conflict (A, 2, A, 3).

2) Bypassing Conflicts: Bypassing conflicts is a term that
refers to another kind of conflict-resolution strategy. In the
MAPF domain, it modifies the paths of the agents that are
involved in a chosen conflict of a CT node instead of splitting
that CT node [22]. We use the same strategy in the VNE
domain as well. When we expand a CT node N and generate
its child CT nodes, if there exists a child CT node NC such that
NC .cost = N.cost and whose number of conflicts is smaller
than in N , we replace the paths in N with the paths in NC and
discard all generated child CT nodes of N . If there is no such
child CT node NC , we split the CT node N as usual. This
strategy often reduces the number of CT node expansions to
find a solution and, therefore, decreases the runtime of CBS.
It can also be applied in focal search at the high level by
modifying the criterion NC .cost = N.cost to NC .cost ≤ w ·
N.cost for choosing the child CT node [23].

In Fig. 2, the last panel shows an example of bypassing
conflicts. iVNE-CBS with disjoint splitting finds a conflict
(A, 2, A, 3) at N0 and splits on it. When it creates the child
CT node N00, it observes that N00.cost = N0.cost since
the path lengths do not change. Therefore, the condition
N00.cost ≤ w · N0.cost is satisfied. Moreover, the number
of conflicts in N00 is smaller than in N0. It therefore replaces

N0.mapping with N00.mapping and discards N00 and N01.
The new N0.mapping encodes a valid solution.

3) Pseudocode: Algorithm 1 shows the high-level search
of iVNE-CBS. It is similar to the high-level search of VNE-
CBS [3] but incorporates various enhancements shown in blue.

It takes three inputs: an SN graph Gs, a VNR graph Gr,
and a suboptimality factor w. On Line 2, it uses Gs and Gr to
create an augmented graph Gm, as described previously. On
Line 3, it precomputes a table of true cost heuristics for the
low-level search (explained later). On Lines 4-8, it initializes
the root CT node NR. On Line 6, it uses the low-level search to
find a path from vf1 to vf2 on Gm for each VNR edge (vr1, v

r
2),

where vf1 and vf2 are the fictitious vertices corresponding to
vr1 and vr2 , respectively. NR.mapping is the resulting set of
paths (the initial VNE mapping). NR.cost is the cost of the
mapping, and NR.num conf is the number of conflicts in it.

On Line 9, iVNE-CBS inserts NR into priority queues
OPEN and FOCAL. OPEN maintains a list of generated CT
nodes, sorted by their costs. FOCAL maintains a list of CT
nodes N in OPEN for which N.cost ≤ w · OPEN.top().cost,
sorted by N.num conf. iVNE-CBS then expands CT nodes
until either a feasible VNE mapping is found or FOCAL is
empty. On Lines 11-13, it retrieves the CT node NT with
the smallest number of conflicts from FOCAL and removes it
from OPEN and FOCAL, following the standard focal search
procedure. On Lines 14-15, iVNE-CBS returns a feasible
mapping if no conflicts exist in NT .mapping. Otherwise, on
Lines 16-17, it finds a conflict in NT .mapping and generates
constraints Cons to resolve it. In resolving conflicts, iVNE-
CBS prefers to resolve vertex conflicts before bandwidth
capacity conflicts. If disjoint splitting is enabled, the resolution
of vertex conflicts is done by generating the negative and
positive constraints in two subtrees, as described in Fig. 2.
In the subtree with positive constraints, the low-level search
is adapted to satisfy them (explained later).

On Lines 18-20, iVNE-CBS generates a child CT node NC



for each constraint c ∈ Cons by making a copy of CT node
NT and adding the new constraint c to NC .constraints. On
Line 21, it updates NC .mapping to accommodate the added
constraint by invoking the low-level search to recompute the
affected paths. If updating the paths is successful, on Lines
22-24, iVNE-CBS calculates the cost and number of conflicts
for NC . On Lines 25-30, iVNE-CBS uses bypassing conflicts
if it is enabled. If NC .cost ≤ w·NT .Cost and NC .num conf <
NT .num conf, it replaces the mapping, cost, and the number
of conflicts of NT with those of NC and discards all generated
child CT nodes of NT . If bypassing conflicts is not enabled or
if the condition on Line 25 is not satisfied, iVNE-CBS splits
NT as in VNE-CBS. On Lines 31-33, following the standard
focal search procedure, iVNE-CBS inserts NC into OPEN and
into FOCAL if NC .cost is within w times the cost of the top
node in OPEN. On Lines 34-37, it updates FOCAL in the
case that the cost of the top node in OPEN has increased as a
result of previous operations. On Line 38, iVNE-CBS reports
the absence of any solution.

B. Enhancements in the Low-Level Search

In this subsection, we describe the improved low-level
search of iVNE-CBS. It is a best-first search that finds a short-
est path from one fictitious start vertex vf1 to another fictitious
goal vertex vf2 in Gm respecting N.constraints, where N is
the corresponding high-level CT node. The fictitious vertices
vf1 and vf2 represent the VNR vertices vr1 and vr2 , respectively.

The first enhancement is referred to as true cost heuristics.
It is a precomputed table of shortest hop distances from
all vertices to the goal vertices under the assumption that
N.constraints = ∅. When, in fact, N.constraints ̸= ∅, these
precomputed distances serve as heuristic estimates in the low-
level search. The precomputation is done by running breadth-
first searches from each goal vertex (such as vf2 ) to every
vertex in Gm and storing the distances in a lookup table
h table. True cost heuristics have been successfully used in
the MAPF domain [13], [24] and are imported here for the
VNE domain. They are particularly effective for the VNE
domain since Gm is normally an abstract graph on which other
commonly used heuristic functions, such as the Manhattan
distance between two vertices, are undefined. Therefore, while
VNE-CBS does not use any heuristic function in the low-level
search, iVNE-CBS has a good heuristic guidance from the
precomputed distances. This often narrows the search space
and yields smaller runtimes.

The second enhancement is the use of a Conflict Avoidance
Table (CAT). The low-level search typically has to choose
between several low-level nodes with the same minimum f -
value for expansion. This is true in both the MAPF and VNE
domains. In such cases, a CAT is used to break ties in favor
of nodes with fewer conflicts. Thus, the path returned by the
low-level search is less likely to cause a conflict with other
paths [24].

In the VNE domain, iVNE-CBS uses a CAT for all kinds
of conflicts, i.e., both vertex conflicts and bandwidth capacity
conflicts. This leads to a tie-breaking rule that is more effective

than the one used in VNE-CBS. (VNE-CBS minimizes the
number of only type-2 vertex conflicts in its tie-breaking rule.)

Another implementation-level improvement in the low-level
search of iVNE-CBS is more efficient duplicate detection.
VNE-CBS only checks if a node has been previously ex-
panded. However, a duplicate child node with the same f -
value can still be generated and added to the open list resulting
in downstream duplication of search efforts. In iVNE-CBS,
we avoid this by checking the duplication of the child nodes.
We record the generated child nodes with their f -values and
allow the generation of a child node only if this node has not
been previously generated. If a child node has been previously
generated, we retrieve the recorded f -value for comparison. If
the f -value of the child node is lower than the recorded f -
value, we allow the generation of the child node and update
the recorded f -value. Otherwise, we prune the child node.

Another new feature of the low-level search of iVNE-CBS
is its ability to support positive constraints in N.constraints.
This is done in the way it generates the neighbors of a node
while searching for a path from vf1 to vf2 . When generating
the neighbors of vf1 , it returns the SN vertices vs that satisfy
CPU(vs) ≥ CPU(vf1 ). If there is a positive constraint on vf1 ,
it only returns the SN vertex in that positive constraint as its
neighbor. When generating the neighbors of an SN vertex vs1 ∈
V s, it includes the SN vertices vs2 ∈ V s such that BW(es) ≥
BW(er), where es = (vs1, v

s
2) and er = (vr1, v

r
2). It includes vf2

if CPU(vs1) ≥ CPU(vf2 ). If there is a positive constraint on vf2 ,
it includes vf2 in the neighbors only when vs1 is the SN vertex
specified in that positive constraint.

In general, all fictitious vertices other than vf2 are excluded
as neighbors of any node since a path is not allowed to go
through other fictitious vertices. All neighbors that are ruled
out by the negative constraints are also excluded. Finally, the
low-level search also rejects any path from vf1 to vf2 that maps
two different VNR vertices to the same SN vertex since such
a path would result in a type-2 vertex conflict.

V. EXPERIMENTS

In this section, we present experimental results compar-
ing iVNE-CBS against VNE-CBS, D-ViNE, R-ViNE, G-SP,
and RW-MaxMatch-SP. The last four algorithms are popular
baseline methods for the core VNE problem. D-ViNE and R-
ViNE heuristically retrieve a solution from an LP relaxation
of an MIP model [11]. G-SP is a greedy algorithm that uses
shortest path computations for mapping VNR edges [25].
RW-MaxMatch-SP is a node-ranking algorithm that uses the
Markov Random Walk model for mapping VNR vertices to
SN vertices based on the resources and topological attributes
of vertices in a network. It maps VNR edges via shortest
path computations [12]. We note that, compared to VNE-CBS,
iVNE-CBS without disjoint splitting or bypassing conflicts
incorporates only improvements in the low-level search.

We implemented iVNE-CBS and the baseline algorithms
in C++. For iVNE-CBS and VNE-CBS, we experimented
with w = 1.0, 1.5, and 2.0. Many configurations of the
iVNE-CBS and VNE-CBS algorithms were studied. In the



experimental results, we refer to them using various self-
explanatory suffixes. For example, VNE-CBS with w = 1.0
is labeled VNE-CBS-w1.0; iVNE-CBS with disjoint splitting
(DS) is labeled iVNE-CBS-DS; and iVNE-CBS with disjoint
splitting and bypassing conflicts (BC) is labeled iVNE-CBS-
DS-BC. All experiments were run on an AWS machine with
8 CPUs and 16GB RAM. We set a timeout of 60 seconds for
embedding a VNR in an SN.

We used Waxman graphs to generate VNE problem in-
stances. Waxman graphs [26] are commonly used in the
VNE literature to simulate communication networks. The
SN topologies are randomly generated Waxman graphs with
parameter values α = 0.3 and β = 0.1. We generated 3 SNs,
each with 500 vertices in a 100 × 100 grid space and with
3, 694, 3, 650, and 3, 482 edges. The CPU and bandwidth
capacities of the SN vertices and edges are real numbers
generated uniformly at random from the interval [50, 100].

We also used the Waxman method with α = 0.3 and
β = 0.2 to generate VNR topologies. We set the number of
VNR vertices to be 10, 20, 30, 40, 50, 60, and 70, generating
1, 000 VNRs for each setting, with an average of 7.05, 18.84,
35.55, 57.39, 86.16, 122.31, and 164.94 edges, respectively.
The VNR vertices were located in the same 100 × 100 grid
space as the SN vertices. The maximum allowed Euclidean
distance for the geographical constraints of VNR vertices
was set to 15. The CPU requirements of the VNR vertices
and the bandwidth requirements of the VNR edges are real
numbers drawn uniformly at random from the interval [0, 20]
and [0, 50], respectively.

We note that the SNs and VNRs used in our experiments are
significantly larger than the SNs and VNRs used in previous
works. While previous works use SNs with only about 100
vertices and 500 edges and VNRs with only about 10 vertices,
here, we use SNs with 500 vertices and around 3, 500 edges
and VNRs as large as with 70 vertices and around 164 edges.

A. Offline Experiments

In this subsection, we present the results of the experiments
conducted in an offline setting. For each setting of the number
of VNR vertices, we mapped each of the 1, 000 VNRs to each
of the 3 SNs, i.e., we generated 3, 000 VNE instances for each
setting. D-ViNE and R-ViNE showed very poor performance
for solving our large-scale VNE instances. For VNE instances
with 10 VNR vertices, D-ViNE and R-ViNE solved only 54
and 49 out of 3, 000 instances, respectively, with average
runtimes of 58.276 and 58.440 seconds, respectively. They
did not solve any of the larger instances. Therefore, they are
not reported in the forthcoming results.

Fig. 3 shows the performances of VNE-CBS, iVNE-CBS,
iVNE-CBS-DS, and iVNE-CBS-DS-BC for different w. The
major comparison metrics include the success rate, the average
cost of the solution, the average runtime, and the average
number of CT node expansions required to find a solution.
The success rate is the fraction of VNE instances that are
successfully solved. No data point is reported for an algorithm
if it failed to solve any VNE instance. The other metrics are

averaged over the VNE instances that are successfully solved
for each setting of the number of VNR vertices.

In general, the success rates of iVNE-CBS algorithms
are much better than that of VNE-CBS and increase with
increasing w. Moreover, disjoint splitting also increases the
success rate and is even better when combined with by-
passing conflicts. In fact, iVNE-CBS-DS-w2.0 significantly
outperforms VNE-CBS and achieves a 98.46% success rate
for VNE instances with 70 VNR vertices. Bypassing con-
flicts allows us to solve 46 more VNE instances in this
realm, increasing the success rate to 99.66%. The average
costs of the solutions produced by all algorithms are similar.
This is because both VNE-CBS and iVNE-CBS algorithms
with w = 1.0 produce optimal solutions. For larger values
of w, iVNE-CBS algorithms are guaranteed to produce w-
suboptimal solutions but in practice produce close-to-optimal
solutions. The average runtimes of iVNE-CBS algorithms
are also better than that of VNE-CBS and improve with
increasing w. Moreover, disjoint splitting also improves the
average runtime and is sometimes benefited when combined
with bypassing conflicts. In fact, iVNE-CBS-DS-w2.0 and
iVNE-CBS-DS-BC-w2.0 significantly outperform iVNE-CBS-
w2.0, indicating the benefits of disjoint splitting and bypassing
conflicts. The same trends are also observed for the average
number of expanded CT nodes required to find a solution.

From Fig. 3, we draw iVNE-CBS-DS-w2.0 and iVNE-
CBS-DS-BC-w2.0 as the two best CBS-based algorithms for
comparison against other baseline methods. We also include
VNE-CBS with the same w in the comparison for evaluating
the enhancements in iVNE-CBS. Fig. 4 shows the comparison
of the chosen algorithms. The iVNE-CBS algorithms have
the best success rates, best average costs, as well as the best
average runtimes.

The average runtime depends on: (a) the average number
of expanded CT nodes and (b) the average number of low-
level nodes expanded per CT node. Fig. 3 shows that the
high-level enhancements in iVNE-CBS significantly reduce
(a), and Fig. 5 shows a comparison on (b). We observe that the
low-level enhancements in iVNE-CBS reduce (b) significantly,
contributing to its superior performance over VNE-CBS even
without high-level enhancements.

B. Online Experiments

In this subsection, we present the results of the experiments
conducted in an online setting. Here, VNRs arrive dynami-
cally at different timesteps, and each successfully embedded
(accepted) VNR holds the SN resources allocated to it until
it departs at the end of its lifetime. VNRs arrive according
to a Poisson process at an average rate of 4 VNRs per
100 timesteps. The lifetime of each VNR is drawn from an
exponential distribution with an average of 1, 000 timesteps.
When mapping a new VNR, no algorithm is allowed to
reconfigure the mapping of previously embedded VNRs. If
an algorithm fails to map a VNR within 60 seconds, it rejects
the VNR and tries the next one. We choose w = 2.0 since it
yields the best performance in the offline experiments.



Fig. 3. Offline Experiment: comparing VNE-CBS and variants of iVNE-CBS with w = 1.0, 1.5, and 2.0.

Fig. 4. Offline Experiment: comparing iVNE-CBS-DS-w2.0 and iVNE-CBS-DS-BC-w2.0 against the baseline methods.

Fig. 5. Offline Experiment: comparing the average numbers of low-level
nodes expanded per CT node for iVNE-CBS and VNE-CBS.

The experiments utilize 3 runs corresponding to the 3 SNs,
each on the same 1, 000 VNRs with a given number of
VNR vertices. Fig. 6 presents the results on the metrics of

cost/revenue, acceptance ratio, and total revenue, averaged
over the 3 runs. The cost/revenue is the cost divided by the
revenue for each accepted VNR. It is averaged over all ac-
cepted VNRs across the 3 runs. On this metric, the iVNE-CBS
algorithms outperform all other algorithms, indicating that they
allocate SN resources to accepted VNRs more efficiently. The
acceptation ratio is the fraction of accepted VNRs. On this
metric too, the iVNE-CBS algorithms outperform VNE-CBS
and other baseline algorithms due to the efficient allocation of
SN resources to previously accepted VNRs. The total revenue
is the sum of the revenue of the accepted VNRs. On this
metric, the iVNE-CBS algorithms outperform VNE-CBS and
other baseline algorithms before dropping slightly for 70 VNR
vertices. The superior performance of iVNE-CBS algorithms
is because of their higher acceptance ratios.



Fig. 6. Online Experiment: comparing iVNE-CBS and its variants with w = 2.0 against other competing algorithms.

VI. CONCLUSIONS

In this paper, we presented iVNE-CBS, a new solver for the
VNE problem that is foundational to network virtualization
and slicing. iVNE-CBS improves on VNE-CBS using various
enhancements in the high-level and low-level searches, such as
disjoint splitting, bypassing conflicts, and true cost heuristics.
These enhancements are inspired by similar enhancements
in the MAPF domain. iVNE-CBS significantly outperforms
VNE-CBS and other popular VNE algorithms both in the
offline and online settings and in terms of both runtime and
solution quality. iVNE-CBS scales well to solve large VNE
instances, much beyond the scale of the instances previously
studied in the VNE literature. Its success is indicative of our
ability to draw power from MAPF technologies and cross-
fertilize ideas between the two domains.
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