
Vikas Kumar, Sandeep
Sharma, Aarna Networks

E2E Nephio R1 workload orchestration

Nephio R1 Intro

Kubernetes-based intent-driven automation of network
functions and the underlying infrastructure

“Swimlanes”
1. Infrastructure
2. Workload (network function)
3. Workload configuration

Nephio R1 Components

Nephio Management Cluster

 Cluster API

Cluster Bootstrap Controllers

Generic Specializers

ipam-specializer

Repository controller

NAD Controller

Nephio ControllersPackageVariant
Controller

PackageRevision
Controller

ConfigSync Package Approver

○ Concepts
■ Config Injection
■ Package Specialization
■ Condition Choreography

Config Injection

1.Apply PackageVariant
Object

Spec:
 upstream:
 package: srcpkg
 …
 downtream:
 package: desiredpkg
 …
 injectors:
 - name: edge01
 …

srcpkg desiredpkg

P-Variant
controller

2.Clone and create draft
workload-cluster.yaml: |-
 apiVersion: infra.nephio.org/v1alpha1
 kind: WorkloadCluster
 metadata:
 name: workload-cluster
 annotations:
 config.kubernetes.io/local-config:
"true"
 kpt.dev/config-injection: required

One KRM in resource list has
config-injection required

1.process plugin points: parse through all the resources
in packagerevision and find the resources with injection
required.

2. Parse the pv.spec.injectors and find the kubernetes
objects, edge01 of kind workloadCluster in this case.

3. Fetch the workloadcluster object and inject it to the
packagerevision desiredpkg in the downstream repo

4.Update Kptfile with,
conditions:
 - type: config.injection.WorkloadCluster.workload-cluster
 status: "True"
 message: injected resource "edge01" from cluster
 reason: ConfigInjected

edge01
kind: worklodCluster

This object contains the contextual information
of the cluster which will later be consumed by
specializers fn/controllers

3. Injection procedure

Nephio Cluster

Config injection is the process of injecting the
contextual information to the downstream
packagerevision resources.
This information is consumed by the KRM
functions in the pipeline for configuring the
packages.
The source of the configuration are in cluster
objects.
This slide explains this with in-cluster
workfloadCluster objects containing the
contextual information about target clusters,
this information is used by KRM functions for
allocation resources like IP addresses for
example.

Specialization Pipeline and Condition
Choreography

Kptfile

 pipeline:
 mutators:
 - image: gcr.io/kpt-fn/apply-replacements:v0.1.1
 configPath: apply-replacements-namespace.yaml
 - image: docker.io/nephio/upf-deploy-fn:v1.0.1
 - image: docker.io/nephio/interface-fn:v1.0.1

interface-fn

upf-deploym
ent-fn

ipclaim-fn

vlanclaim-fn

nad

dependency

 status:
 Conditions:
 Type: interface
 Status: not ready
 Type: vlanclaim
 Status: not ready
 Type: ipclaim
 Status: not ready
 ….

Kptfile1.saving packagerevision triggers
pipeline.
2. Functions create inventory of for,
owns and watch
3.Functions Update kptfile
conditions and save.

generic-specialiser

4.Reconces the
packagerevision, checks
conditions and invokes
corresponding functions

edge01
kind: worklodCluster

Ipam,vlan backend

6.Functions Keep updating
conditions in kpt file as
resources are allocated and
created

5.Consult the clustercontext object and
allocate ip vlan via the backend
controllers based on the kind of CNIs in
the target cluster

Eventually all resources all allocated, and all conditions in the KPTfile are set to
Ready by the condition choreography done by KRM fns/controllers. The result is the
deployment of UPFDeployment curated CR in the edge01 cluster

Our Use Case

● Orchestrate, discover and manage
○ Infrastructure - metal, kubernetes clusters
○ Workloads - VMs, Containers, VMs as pods (

kubevirt)

 Bare-metal provisioning

Mgmt
repo

Infra related packages Mgmt-staging
repo

Nephio Controllers

specialization

ConfigSync

Provision metal

Install Kubernetes

Bootstrap Cluster

Cluster context

Infra Intent

Workload Orchestration
GUI/CLI

E2E Service Intent

Golden
Templates

Porch + Specializer functions

Per
Tenant
Repo

ConfigSync
Topolo

gy
Contro
ller CR

Workflow

Vendor
Plugins

Nephio
Controllers

Graph DB

R1-Demo

This demo is created by following this
community link:

https://github.com/nephio-project/docs/bl
ob/main/user-guide/exercises.md

https://github.com/nephio-project/docs/blob/main/user-guide/exercises.md
https://github.com/nephio-project/docs/blob/main/user-guide/exercises.md

Q&A, Thank You

Infrastructure Automation Flow
Nephio Mgmt cluster

Package
Variant

Cluster intent

management
repo

Upstream repo

Cluster-mgmt
Repo

Downstream repo

● Package variant controller creates
package in the downstream repo

● The packages have condition sets
which are the point of choreography
between different specialiser
controllers

ConfigSync BMH/Cluster
API

● Reconcile the package which
contains cluster API KRMs

Kind cluster

Bootstrap
controllers

ConfigSync

Edge Repo

Workload Deployment Automation
Nephio Mgmt cluster

Package
Variant

Workload intent

Edge cluster

Specializers

ConfigSync

Edge Repo

management
repo

Base package pipeline and conditions.
● Ipam : NotReady
● NAD: Not Ready
● VendorDeployment KRM: NotReady

Ipam specialiser gets ip allocated based on target
cluster, and updates the package using KRM
function

● Ipam : Ready
● NAD: Not Ready
● VendorDeployment KRM:

NotReady

● Ipam : Ready
● NAD: Ready
● VendorDeployment KRM: NotReady

● Ipam : Ready
● NAD: Ready
● VendorDeployment KRM: Ready

NAD injector updates the package by inserting the
network attachment definition KRMs

This specializer can insert configmap or
deployment objects based on the vendor NF
requirement

Approver

Edge Repo

Approve and publish package when all
conditions are met.

NF

