
November 2023
Presenter:
Andreas Geissler (DT) – OOM PTL
Byung-Woo Jun (Ericsson) – ARCCOM Chair, TSC

ONAP Streamlining – The Process

ONAP Component Build
and Deployment Thru CD

ONAP Streamlining – Transformation
• Thru ONAP Streamlining, ONAP is no longer a platform, rather it provides various network automation functions, and security reference configuration in

LFN.
• ONAP enables individual ONAP function build, and component deployment thru CD
• Build use cases for repository-based E2E service, NS, CNF and CNA onboarding, and CD-based ONAP component triggering mechanisms with

abstracted interfaces for choreography (that is shown in Nephio architecture)
• Standard-based abstracted interfaces with declarative APIs
• Each component is autonomous and invoked from any level of Network Automation, by leveraging CD mechanisms – e.g., GITOps and CD readiness

• ONAP will become more intent-based and declarative, and bring in more AI, conforming to standards such as 3GPP, TMForum, ETSI, IETF, ORAN, etc.
• Extend UUI User Intent support and AI-based natural language translation, by applying coming 3GPP and TMForum models and APIs
• Delegate resource-level orchestration to functions from the external community

• ONAP continues to support the Service Mesh, Ingress, OAuth2, IdAM-based authentication and authorization, and consider sidecar-less solution for NF
security.

• Modular
• individual
• interface abstraction
• loose coupling
• Extensibility
• Interchangeability
• Autonomous
• Declarative
• CI / CD ONAP components

and E2E Service, NS, CNF
& CAN handling

ONAP focuses on Network Automation Functions

ONAP Streamlining – Component Design,
Build & Deployment

• ONAP Components are independently deployable pieces of
software, built out of one or more microservices
• Modular
• Autonomous
• Extensible and substitutional

• ONAP Network Automation processes will manage more
intent-based operations using AI/ML.
• Manage user and other Intents and translations
• Study on TMForum & 3GPP Intent models and APIs

• ONAP components conform to the standards and de facto
specifications to enable plug and play and pick-and-choose
facilitation.

Build
pipeline

Artifact
Repository

(GIT, Nexus,
others,

container
registry)

ONAP
Code

push

Jenkins

Montreal Support

All communications are secure

• ONAP repository-based SW management enables smaller
imperative actions that can be triggered by different events
in the orchestration and SW LCM flow.

• Events can trigger different types of deployment automation jobs or
chains of automation jobs (pipelines).

• In Jenkins, ONAP OOM build scripts will be used for ONAP
component builds and will store built ONAP components into
the Artifact Repository (e.g., Nexus). This can be changed.

• CD (e.g., ArgoCD, Flux, others) will be used to pick and
choose ONAP components.

ONAP Component Individual Build
• Leveraging the existing LF-based CI pipeline, builds ONAP components

individually
• Check-in ONAP component code and triggering build processes
• Thru the CI pipeline, each ONAP component will be built by scripts (e.g.,

modified OOM, or project-own scripts), along with SBOM
• Secure CI pipeline will be applied.

• Project Helm chart separation from the master Helm chart, and adding
individual versioning
• Currently, all the ONAP component helm charts have the same version

number (e.g., 13.0.0). for a start,
• e.g., projects with PTLs can start with 13.0.0. as the major Montreal

release, and they can play with minor version(s) based on their
release cycle, e.g., 13.0.1, 13.1.0… Projects without PTLs (or no
improvement) will have the major Montreal version, e.g., 13.0.0

• Other options: see, Break ONAP’s monolithic version schema (by
Florian
Bachmann), https://wiki.onap.org/display/DW/Proposal%3A+Break+O
NAP%27s+monolithic+version+schema

• PTLs determine granularities of project function exposures, e.g., exposing
sub-components, use of flags for sub-component installation

• A common job will create all the ONAP charts.

• Having a separate job per component will be investigated

https://wiki.onap.org/display/DW/Proposal%3A+Break+ONAP%27s+monolithic+version+schema
https://wiki.onap.org/display/DW/Proposal%3A+Break+ONAP%27s+monolithic+version+schema

ONAP Helm Chart Dependencies
• Past State:

• All charts are managed in one project:
https://git.onap.org/oom/

• Chart dependencies are using wildcards (main chart
will include the latest version of a subchart or common
charts)

• All charts are built (and stored in Nexus) after a merge
• Currently, “appVersion” is not used in the charts

• Decision:
• Use wildcards (e.g., ~13.x-0) in dependencies
• Start with <rel>.0.0 every ONAP release for all charts

(e.g., 13.0.0)
• When a “common” component (template, DB chart) is

changed, it will b4e included automatically in a
component chart.

• Guidelines:
• Component chart version update needs to done in a

separate patch; all component chart versions (main +
subchart) have to be updated

• It is recommended to also set and maintain the
“appVersion” in a chart

• Merge Job
• Currently, common job to create all ONAP charts
• possible enhancement: separate jobs per

component à to be investigated

https://wiki.onap.org/display/DW/ONAP+Helm+chart+dependencies

https://git.onap.org/oom/
https://wiki.onap.org/display/DW/ONAP+Helm+chart+dependencies

ONAP Helm Versioning Plan
• At ARCCOM, Florian Bachmann (DT) presented:

• ONAP version Schema options, https://wiki.onap.org/display/DW/Proposal%3A+Break+ONAP%27s+monolithic+version+schema
• Three possible solutions were proposed
• Option 1: Separate Marketing version (e.g., Montreal / 13) and component version

• The component version can be evolved based on the component feature / API changes individually, by following the SemVer scheme (SemVer.org)
• It could be a target goal, but considering ONAP build impacts, the Option 2 is preferred for Montreal

• Option 2: Use Marketing version as the MAJOR version
• The Marketing/Major version will represent the usual ONAP update cycle, e.g., Montreal/13
• All ONAP components excluding unmaintained ones will start with the same Marketing/Major.Minor.Patch version (e.g., 13.0.0) at the beginning
• Within the marketing/major release, each ONAP component can have multiple minor / patch versions depending on its development cycle(s)

• Option 3: Leave it as is. - this is “not” applicable for ONAP Streamlining
• For Montreal release, the Option 2 is chosen. It would be a study item for migrating from the Option 2 to the Option 1 in the future

Short-term plan (e.g., Montreal) Long-term plan
for a future release (Marketing version xyz)

https://wiki.onap.org/display/DW/Proposal%3A+Break+ONAP%27s+monolithic+version+schema
https://semver.org/

Deployment evolution
• Current “platform” deployment in “OOM”:

• Using a “umbrella” ONAP chart with component dependencies
• Usage of “common” wrappers (roles, registry,…)
• Helm deployment using a selfmade “deploy” plugin

• Target:
• Individual deployment the “GitOps” way by using tools like ArgoCD, Flex
• Already now working (DT)

See: https://wiki.onap.org/display/DW/ONAP+deployment+evolution

https://wiki.onap.org/display/DW/ONAP+deployment+evolution

Removal of shared “wrappers”
• Current issues:

• ClusterRoleBinding “onap-binding” is missing and need to be added before deployment
• “onap-roles-wrapper” is required, as onap-* roles are used by the “ServiceAccount”

chart
• ServiceAccount chart uses a naming schema for the default ”role” binding

• Solution:
• The common chart “ServiceAccount” is extended to support the “default” Role creation
• A new parameter “createDefaultRoles” are used
• https://wiki.onap.org/display/DW/ONAP+deployment+dependencies

https://wiki.onap.org/display/DW/ONAP+deployment+dependencies

• See DDF (06/22) Florian Bachmann https://wiki.lfnetworking.org/pages/viewpage.action?pageId=68792723

GitOps - Cloud Native Agility and Reliability
GitOps - Cloud Native Agility and Reliability

GitOps is a set of modern best
practices for deploying and
managing cloud native infrastructure
and applications.

Based on our experience operating
a full cloud native stack

GitOps manages the whole stack:
• Cluster and application versioned

configuration
• Security and policy enforcement
• Monitoring and observability
• Continuous Deployment of

workloads

• Complete platform: Single platform
for infrastructure, core components
and applications.

• Productivity: Dramatically increase
deployments and faster feedback
and control loop,

• Reliability: Enables cluster and
application operator model with
standardised tooling.

• Compliance and Security: Enforces
standard security policy and an audit
trail

• Multi-cloud and on-premise: Deploy
a complete cluster from git with all
applications.

• All application deployments,
application operations and cluster
management operations under
one platform with a common
workflow.

Solution Benefits Vision

Observe

Orient

Deploy to
Kubernetes

Manage

Git Monitor

Act

Decide

https://wiki.lfnetworking.org/pages/viewpage.action?pageId=68792723

ArgoCD deployment

Q & A

Thank you !

