
November 2023
Presenter:
Kamel Idir (Ericsson)
Byung-Woo Jun (Ericsson) – ONAP ARCCOM Chair, TSC

ONAP Streamlining – The Process

ONAP NF Package
Onboarding Use Cases

ONAP Streamlining – Transformation
• Thru ONAP Streamlining, ONAP is no longer a platform, rather it provides various network automation functions, and security reference configuration in

LFN.
• ONAP enables individual ONAP function build, and component deployment thru CD
• Build use cases for repository-based E2E service, NS, CNF and CNA onboarding, and CD-based ONAP component triggering mechanisms with

abstracted interfaces for choreography
• Standard-based abstracted interfaces with declarative APIs
• Each component is autonomous and invoked from any level of Network Automation, by leveraging CD mechanisms – e.g., GITOps and CD readiness

• ONAP will become more intent-based and declarative, and bring in more AI, conforming to standards such as 3GPP, TMForum, ETSI, IETF, ORAN, etc.
• Extend UUI User Intent support and AI-based natural language translation, by applying coming 3GPP and TMForum models and APIs
• Delegate resource-level orchestration to functions from the external community

• ONAP continues to support the Service Mesh, Ingress, OAuth2, IdAM-based authentication and authorization, and consider sidecar-less solution for NF
security.

• Modular
• individual
• interface abstraction
• loose coupling
• Extensibility
• Interchangeability
• Autonomous
• Declarative
• CI / CD ONAP components

and E2E Service, NS, CNF
& CAN handling

ONAP focuses on Network Automation Functions

ONAP Repository-based Software
Package + LCM Use Case – an idea

OSS
Client

vendor Delivery
pipeline

Artifact
Repository
(GIT, OCI,

other
registry)

Design/
Configuration

Controllers

Deployment
Repository
(GIT, OCI,
others)

Deployment
Repository
(GIT, OCI,
others)

CD
(Flux, ArgoCD,

…) actions

customization,
hydration,

design
actions

intent feedback

Reconcile & Configuration

E2E,
NS,

VNF,
CNF,
CNA

+
intent

customized/
hydrated

E2E,
NS,

VNF,
CNF,
CNA

+
intent

customized/
hydrated

E2E,
NS,

VNF,
CNF,
CNA

+
intent

External
Component

External
Component

Manage ONAP

distribute

reconcile

reconcile

CD
(Flux,

ArgoCD, …)

reconcile

External
Injection

component
function

component
function

Intent &
service definition

intent feedback

Distribution

Intent
Manager

multi-tenancy
security

multi-tenancy
security

multi-tenancy
security

• Multi-Tenancy
• Workload Cluster
• Name space

• Multi-Tenancy
• Workload Cluster
• Name space

push Images,
helm charts

• Package onboarding to ONAP thru repository can also trigger SW LCM flows (deploying packages as intents).
• Applications, packages and intents are worked in the multi-tenancy, multi-workload cluster and multi-namespace runtime environment.

All communications are secure

push E2E,
NS,

NF & NA
packages

transformed
Intent &
service definition

intent

intent

deploy vendor
package, as intent

Ev
en

t
Ha

nd
le

r
Ev

en
t

Ha
nd

le
r

event

event

ONAP

ONAP

ONAP

CD
(Flux, ArgoCD,

…)

actions

actions

ONAP CNF CSAR Package Onboarding
Use Case

OSS
Client

vendor Delivery
pipeline

Artifact
Repository
(GIT, OCI,

other
registry)

Deployment
Repository
(GIT, OCI,
others)

Deployment
Repository
(GIT, OCI,
others)

actions

actions

intent feedback

Push Docker Images,
Helm Charts and

GitOps Pkg

Update runtime git re
po with infra,

app and intent flu
x manifests

Update runtime repo git with infra

app and intent flux manifests

External
Component

External
Component

Manage ONAP

source change

source change

GitOps
Configuration

Controller

Event

component
function

(SO)

component
function

Intent &
service definition

intent feedback

Distribution

Intent
Manager

• Multi-Tenancy
• Workload Cluster
• Namespace

• Multi-Tenancy
• Workload Cluster
• Namespace

push Images and
Helm Charts

• ONAP repository-based SW management enables smaller imperative actions that can be triggered by different events in the orchestration and SW LCM flow.
• Applications, packages and intents are worked in multi-tenancy, multi-workload cluster and multi-namespace runtime environment

All communications are secure

Push CNF CSAR
Package

transformed
Intent &

service definition

Ev
en

t
Ha

nd
le

r
Ev

en
t

Ha
nd

le
r

Events

Events

Create GitOps platform-admin and
tenant apps repository structure

Generate the CNF
GitOps Package (flux-manifets)

Create GitOps platform-admin and
tenant apps repository structure

Flux

Flux
notification-controller

notification-controller
source-controller
Helm controller

actions

source-controller
Helm controller

actions

ONAP CNF CSAR Package Onboarding and
FluxCD Deployment Use Case

Use Cases:
1. Download CNF CSAR package / Vendor pushes CNF

CSAR package.
2. Gitops CI pushes Helm charts to helm registry.
3. Gitops CI pushes docker images to Docker registry.
4. Gitops CI creates Gitops repository structure.
5. Gitops CI generates Gitops package (flux manifests

required to create app desired state in runtime git
repo).

6. GitOps Config controller creates runtime git repos for
platform-admin tenant and tenant-app (multi-
tenancy).

7. GitOps CI updates runtime git repos with infra and
application manifests (app desired state).

8. Flux reconciles.
9. Flux pulls docker images from docker registry.
10. Flux pulls helm charts from helm repository
11. Deploys CNF in Kubernetes Workload Cluster.

Pre-requisites:
• Workload Cluster deployment
• Flux Bootstrap

Git Repository Structure (Flux)
• Mono Repo

• Single tenant clusters
• Single repo for all clusters and applications

• Repo per environment.
• In this approach, we can have different repositories for

Lab/Staging/Production, OR different repo for each cluster.

• Repo per team
• This approach is for multi-tenancy clusters if we assume that an

organization has a dedicated platform admin team that provides
Kubernetes-as-a-service for other teams. For example, we can have
• One repository for platform-admin team responsible for setting up the staging

and production environments, maintains the cluster-wide resources (CRDs,
controllers, admission webhooks, etc.) and configurations of tenant's
namespaces and Git repos

• One repo per tenant responsible for setting up applications definitions (K8s
deployments, Helm releases) and configures how the apps are reconciled on
each environment (Kustomize overlays, Helm values).

• Repo per application
• Like repo per team, but in this approach each tenant is a single app

instead of a team (handling one or more apps).

Ways of structuring your repositories | Flux (fluxcd.io)

Platform admin repo

Tenants' repo

Runtime Git Repo Structure Example for Flux Multi-Tenancy

https://fluxcd.io/flux/guides/repository-structure/

Flux Multi-Tenancy: Platform admin vs
Tenant Roles

• Platform Admin
• Has cluster admin access to the fleet of clusters.
• Has maintainer access to the fleet Git repository.

• Manages cluster wide resources (CRDs, controllers,
cluster roles, etc).

• Onboards the tenant’s main GitRepository and
Kustomization.

• Manages tenants by assigning namespaces, service
accounts and role binding to the tenant's apps.

• Tenant
• Has admin access to the namespaces assigned to

them by the platform admin.
• Has maintainer access to the Git repository and

apps repositories.
• Manages app deployments with GitRepositories and

Kustomizations.
• Manages app releases with HelmRepositories and

HelmReleases.

Dev Ops

fluxcd/flux2-multi-tenancy: Manage multi-tenant clusters with Flux (github.com)

https://github.com/fluxcd/flux2-multi-tenancy

Q & A

Thank you !

