
Scaling CPS
Performance Improvement LearningsLee Anjella Macabuhay

Toine Siebelink

(Daniel Hanrahan)

Nov. 2023

• High Level Overview CPS

• CPS Evolution

• Highlights

• Case Studies

CM-Handle (de)-Registration

CPS-Path Query Performance

High Memory Usage

• Conclusions

Agenda

CPS Overview

Configuration Persistence Service

● CPS is a component designed to serve as a data repository for runtime data that

needs persistence.

o Example: Storing config parameters used by xNFs, like storing 5G network

configuration parameter for a PNF that sets the mechanical tilt.

● CPS Implementation was started in 2020.

● Developed as part of the ONAP (Open Network Automation Platform)

o Use in production by Deutsche Telekom and Ericsson!

Configuration Persistence Service

● Components of CPS:

 CPS-Core provides the generic storage of Yang module data.

 NCMP (Network Configuration Management Proxy) provides access to
network configuration data at a higher level than CPS-core.

 NCMP is designed to be vendor-neutral, using DMI (Data-Model-Inventory)
plugins.

● CPS-core has CRUD operations + query language based on XPath.

 Uses YANG for data modeling.

● CPS is cloud-native (REST), with SPI.

● Tech stack: Java, Spring, JPA+JDBC, Hazelcast, Kafka, Groovy/Spock

CPS Evolution

Original Requirements

•‘PoC’

•Focus on Functional

•Focus on Interfaces & Standardization

•Support ‘a few’ Nodes

CPS Evolution

Evolved Requirements

• ‘PoP’

• Handle Large Data Sets

• Perform with Speed

• Scalability

Technology Choices

• SpringBoot

• Postgress DB

• JPA (Hibernate)

CPS Evolution

Community Feedback

• Stakeholders
Wipro (OpenRoadm model)

Deutsche Telekom (Queries)

T-Mobile

Capgemini

Ericsson (20,000 Nodes)

CPS Evolution

• Challenges Highlighted

 Data Performance

o Writing large data slow

o Deleting slow

o Queries slow

 Stability concerns

o Out of memory crashes

Highlights

Highlights

The throughput of many CPS operations has been improved by orders of magnitude.

CPS Path Query Optimization

o Worst-case (find all) time complexity reduced significantly:

- From O(N^2) (quadratic) to O(N) (linear)

o Best case (find one) improved from O(N) to O(1) constant

Uniform Time Complexity

o All CPS operations now exhibit O(N) worst-case time complexity.

New performance test suite (measuring time and memory)

Memory Efficiency

o Memory consumption during read operations reduced by more than 90%.

Case Study 1
CM-Handle (de)-Registration

CM-Handle (de-)Registration

● Ericsson had specific performance requirements

● Assessed current performance with Postman:

– CPS was 100’s of times slower than needed

– CM-handle de-registration had O(N2) performance

● Many improvements made, driven by analysis & metrics

● Added Prometheus metrics

– Discovered that some delete DB operations took a long time

– Hundreds of thousands of DB calls for de-registering 20k CM-handles

CM-Handle (de)-registration

● Types of Improvements:

– Batch implementation

– SQL query optimization (online example: https://gerrit.onap.org/r/c/cps/+/133347)

– Reduced total DB calls by 98% (see example #1)

– Added DB indexes to speed some operations

– Algorithmic changes for fetching descendants in data-trees (see example #2)

CM-Handle (de)-registration

• Overall time complexity reduced from quadratic to linear

• In absolute terms, for Ericsson’s use-case, performance is
1000’s times faster (from 2 days to 1 minute)

• Performance exceeded requirements

• Addition of new performance tests prevent regressions
(example #3)

CM-handle deregistration (1st August 2023)

CM-handles/secTime (sec)Total CM-handles

3271.53500

3782.651,000

37713.265,000

38625.9310,000

35656.1520,000

Case Study 2
CPS Path Query Performance

CPS Path Query Performance

● Unacceptably slow queries

● Queries taking hours, preferably take < 1 minute

● Added new test cases, using OpenRoadM NM data, and compiled report showing

quadratic time complexity.

● Proposal identifying causes and suggested improvements. See Performance Analysis Study (wiki)

● Delivered solution exhibiting :

– Constant (irrespective of DB size) performance for single node data

– Linear performance for query that return all data

CPS Path Query Performance

Constant (irrespective of DB size) performance for single node data

Constant (irrespective of DB size) performance for single node data

Linear performance for query that return all data

Linear performance for query that return all data

Case Study 3
High Memory Usage

High Memory Usage

• Problem: peak memory usage causing Out Of Memory Errors

• Used VisualVM for heap dump analysis

• Identified two possible causes and improvements
• Single char bug: <= instead of < when fetch descendants in a tree structure 
• Spring Data feature: “Interface Projection” convenient but costly! (see example #4)

• Exceeded the requirement of memory reduction by ~99%

• Corrective Actions: measure memory usage in tests (see example #5)

Conclusions

Conclusions

1. Plans Change!

2. JPA / Hibernate generated code good to get started

3. Human designed code best for optimization
Hibernate can Mix & Match

4. Value of Metrics

5. Importance of Early Performance Test, Daily Graphs

Thank You For Your Attention!

Any Questions?

Examples

Example 1: Reducing DB Calls

< Back to Case Study 1

See https://gerrit.onap.org/r/c/cps/+/133627/6/cps-service/src/main/java/org/onap/cps/api/impl/CpsDataServiceImpl.java

AfterBeforeMethod

Sec.# CallsSec.# Calls

0.81,41725.361,617findByName

0.242324.660,817findByDataSpaceAndName

Example 2: Algorithm Changes

< Back to Case Study 1

See https://gerrit.onap.org/r/c/cps/+/133511/12/cps-ri/src/main/java/org/onap/cps/spi/repository/FragmentRepository.java

Example 3: Performance tests plots

< Back to Case Study 1

Example 4: JVM Dump Analysis

< Back to Case Study 3

Example 5:
Sample Performance Test Report

< Back to Case Study 3

