
Actions
Matt Watkins

Release Engineering
The Linux Foundation

 Personal Introduction

• BSc Degree, Physics with Astrophysics, York University
• Graduated in 1997 and moved to Cambridge
• Accidentally became an Internet network engineer
• Lots of data centre work; routers, switches and firewalls
• Worked for a number of Internet Service Providers
• Sun Solaris, Linux system administration
• 25 Years in networking business, recent pivot into software
• Two years working for the Linux Foundation

• Brief Review of Existing LFN/Project Tooling
(Gerrit, Jenkins, JCasC, JJB, Global JJB, Sandbox Access)
• GitHub and GitHub Actions Overview
• Digging into GHA Details
(Workflow Files, Linting/Verification, Triggers, Variables/Secrets)
• Advanced Features
I/O, Artefacts, Signing, Trusted Publishers, Matrix Operations, Apps
• Composite Actions, Reusable Workflows
• Interactive Demonstrations throughout!

 Presentation Overview

 Mission Statement

DevOps Statement of Intent

“The mindset we should carry is that
we always want to automate ourselves
into a better job. We want to make sure
that the task we’re doing manually
today becomes mostly automated”

 Review Existing Tooling

Gerrit <-> GitHub
• GIT backend with web portal/interface
• Considered best in class for code review purposes
• Not going anywhere anytime soon for LFN projects
• In most cases, code is already replicated to GitHub
• Integration was held back for some time by missing APIs/features
• Last round of Gerrit updates unlocked integration capability
• This means there is an opportunity to deploy GitHub Actions
• However, if replication is performing poorly, problems can arise

 Review Existing Tooling

Jenkins, JCasC, JJB, Global JJB
• Jenkins hosted in VEXXHOST and jobs run on an isolated network
• Executor nodes exist in a pool; if not available spin-up is slow
• GitHub Actions uses containers and jobs deploy/execute quickly
• Potentially easier to tap pre-built images, e.g. Docker Hub, etc.
• Puppet is used for server management
• Jenkins configuration not defined using interface; JJB and JCasC
• Job templates in global-jjb (sub-repo), ci-management contains jobs

https://dashboard.vexxhost.net/auth/login/?next=/
https://jenkins-job-builder.readthedocs.io/en/latest/
https://www.jenkins.io/projects/jcasc/
https://docs.releng.linuxfoundation.org/projects/global-jjb/en/latest/
https://github.com/onap/ci-management

 GitHub Actions Workflows

Features:
• Configuration files authored in YAML format
• Located in the directory: .github/workflows
• Sit alongside the repository code
• Can pull/execute actions from other repositories
• YAML and GHA linting tools are available

 GitHub Actions Workflows

Triggers
Documentation: Events that trigger workflows

• Can be triggered manually
• Can be triggered automatically on a variety of events
• Can be run on a schedule (CRON)

https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows

 Workflow Triggers

Useful Examples
Manual
 workflow_dispatch:

Schedule
 schedule:
 - cron: "0 0 * * MON”

Repository actions
 pull_request:
 types: [opened, reopened, edited, synchronize]

Pushing tags
push:
 # Only invoked on release tag pushes
 tags:
 - v*.*.*

 Matrix Operations

Example Workflow Configuration

jobs:
 build:
 name: "Audit Python dependencies"
 runs-on: ubuntu-latest
 strategy:
 fail-fast: false
 matrix:
 python-version: ["3.9", "3.10", “3.11"]

 Release Job Example
Release Job for Python Project
https://github.com/os-climate/ITR-examples/actions/runs/6787713863

https://github.com/os-climate/ITR-examples/actions/runs/6787713863

 Dev Release Job Demo
Development Release Job Demo
https://github.com/os-climate/ITR-examples/actions/workflows/test-release.yaml

https://github.com/os-climate/ITR-examples/actions/workflows/test-release.yaml
https://github.com/os-climate/ITR-examples/actions/workflows/test-release.yaml

 Trusted Publishers

Allows interactions between sites without use of fixed authentication tokens

Links:
OpenID
PyPI
GitHub

https://openid.net/developers/how-connect-works/
https://blog.pypi.org/posts/2023-04-20-introducing-trusted-publishers/
https://docs.github.com/en/actions/deployment/security-hardening-your-deployments/about-security-hardening-with-openid-connect

 Trusted Publishers

Example Implementation in workflow:
jobs:
 pypi-publish:
 name: upload release to PyPI
 runs-on: ubuntu-latest
+ permissions:
+ # IMPORTANT: this permission is mandatory for trusted publishing
+ id-token: write
 steps:
 # retrieve your distributions here

 - name: Publish package distributions to PyPI
 uses: pypa/gh-action-pypi-publish@release/v1
- with:
- username: __token__
- password: ${{ secrets.PYPI_TOKEN }}

 Apps

https://github.com/os-climate/ITR/settings/installations

 Linting

Can work with pre-commit hooks!

Configure application:
https://github.com/organizations/os-climate/settings/installations/43027599

Take a look at a typical pull request:
https://github.com/os-climate/ITR/pull/298

Pre-commit output:
https://results.pre-commit.ci/run/github/384066937/1699962571.5gI3qZy5Q7aBzBj9J-fmgw

Can auto-update linting tools by raising a PR:
https://github.com/os-climate/ITR/pull/274

https://github.com/organizations/os-climate/settings/installations/43027599
https://github.com/os-climate/ITR/pull/298
https://results.pre-commit.ci/run/github/384066937/1699962571.5gI3qZy5Q7aBzBj9J-fmgw
https://github.com/os-climate/ITR/pull/274

 Dependabot
Documentation on configuration:
https://docs.github.com/en/code-security/dependabot/dependabot-version-updates/configuration-options-for-the-dependabot.yml-file

https://github.com/os-climate/ITR/network/updates
https://docs.github.com/en/code-security/dependabot/dependabot-version-updates/configuration-options-for-the-dependabot.yml-file

 Reusable Workflows

What Are they?
Reusable workflows are YAML-formatted files, very similar to any other GitHub Actions
workflow files. As with other workflows, you locate reusable workflows in the “.github/
workflows” directory inside a repository. Subdirectories of this folder are NOT supported.

For a workflow to be reusable, the values for on must include “workflow_call”:

 Reusable Workflows

Why should you use them? 💭

• Reduces redundancy
If you have multiple repositories deployed the same way, reusable workflows
can help you keep them in sync

• No Duplication, modularity
We already know that by referencing workflows in another GitHub Action
workflow, you reproduce the same work

• Easy to create
All you need to have is a trigger and a workflow_call to prompt it. This simple
and effortless process is documented here

https://docs.github.com/en/actions/using-workflows/reusing-workflows#creating-a-reusable-workflow

 Reusable Workflows

Features of Reusable Workflows

Three primary features:

1.Inputs: variables/other data passed in by the calling workflow
2.Secrets: credentials that can be consumed by the workflow
3.Outputs: artefacts or other data created by the workflow

Inputs/secrets can be mandatory requirements!
e.g. required: true

 Reusable Workflows

Release Engineering: Reusable Workflows

We have a new repository, it’s public, and you can find it here:
https://github.com/lfit/releng-reusable-workflows/tree/main/.github/workflows

https://github.com/lfit/releng-reusable-workflows/tree/main/.github/workflows

 LF GHA Workflows

Release Engineering are porting our jobs!

You may have already seen them in Gerrit!
e.g.
https://git.opendaylight.org/gerrit/c/releng/builder/+/108980
…and here:
https://github.com/opendaylight/releng-builder/actions/runs/6878770145

https://git.opendaylight.org/gerrit/c/releng/builder/+/108980
https://github.com/opendaylight/releng-builder/actions/runs/6878770145

 Run Workflows Locally

Useful for debugging; it can be done!

The tools is here: https://github.com/nektos/act

Prerequisites:
• A local Docker install
• A suitable base image to execute the workflows with

Obviously, there are some limitations…
Mainly, the lack of full GitHub environment/context
e.g. Missing secrets/tokens, trusted publishing support

https://github.com/nektos/act

 Run Workflows Locally

Running Actions Locally

User documentation: https://nektosact.com/

Configuration file specifies the container image: ~/.actrc
e.g.

-P ubuntu-latest=catthehacker/ubuntu:full-latest

Have encountered some issues with Apple Silicon…

https://nektosact.com/

 Run Workflows Locally

Docker Image Requirements

• Choose same baseline OS image(s) as your workflows
• Modern NodeJS required
• Python3 and related tools (pyenv/pip/venv)

Apple Silicon issues: some third party workflows
download x64 binaries and ignore the underlying platform!

 Run Workflows Locally

Example:

 Further Reading

Want to learn more?

Bookmarks for your GitHub Actions learning journey 🚀
Check out these protips from @talktopri
Get started learning GitHub Actions in 3⃣ easy steps:
• More details on CI/CD 🔃
• Explore the GitHub Actions Documentation
• GitHub Actions public roadmap

https://github.com/orgs/community/discussions/30965
https://github.com/talktopri
https://resources.github.com/ci-cd/
https://docs.github.com/en/actions
https://github.com/orgs/github/projects/4247/views/1?filterQuery=actions

 </presentation>

Thank
You!

