Developer & Testing Forum

Revolutionizing Network Monitoring: Unleashing AI/ML for Management and Network Orchestration

Maggie Cogdell Laboratory for Advanced Cybersecurity Research (LACR) NSA Research mccogde@uwe.nsa.gov

Yatis K. Dodia

Georgia Tech Research Institute

yatis.dodia@gtri.gatech.edu

Agenda

Background **Problem Motivation** Slice Threat Modeling **SD-Core and Data Generation** DCAE Closing the Loop

Background

Problem Motivation Slice Threat Modeling SD-Core and Data Generation DCAE Closing the Loop

Maggie Cogdell

5G Slice Security and Orchestration

- Goal: Create a comprehensive capability to obtain real-time insights into the security of 5G networks.
- Objectives:
 - Create testbed collect and classify relevant data
 - Identify performance and fault metrics that indicate abnormal network behavior

DLF

LEN Developer & Testing

- Apply to the Distributed Slice Mobility (DSM) attack
- Demonstrate Closed Loop proof of concept
- Contribute model and lessons learned to the Linux Foundation

Progress update and background

- 5G Open Source Testbed
 - Define relevant data sources and capture data sets (this is hard!)
 - Define performance metrics for monitoring / instrumentation of the network and compute resources
 - Implement programmatic hooks for 5G Core and ONAP
- Data ingestion and model construction
 - Data gathering and packaging
 - Training & analysis
- ML model building, testing, analysis e.g.
 - -Deep learning for anomaly detection
 - -Reinforcement learning for response

CLF

LFN Developer & Testing Forur

Figure 5.2.2.2.5-1: Orchestrating AI/ML

3GPP TR 28.908 V1.2.0 (2023-04)

- What actions will an operator want to take automatically?
 - Contain, mitigate, isolate, etc.
- Closed Loop

OLF

NETWORKING

LFN Developer & Testing Forum

https://www.researchgate.net/figure/an-Son-in-a-5g-network-including-orchestration-of-the-ran_fig2_322879450

5G Cyber Using ONAP's DCAE

Yatis K. Dodia

Background Problem Motivation

Slice Threat Modeling SD-Core and Data Generation DCAE Closing the Loop

5G Cybersecurity

LFN Developer & Testing Forum

Cyber Threats

- Privacy
 - User targeting and presence detection
- Accessibility and/or Service Degradation
 - RAN jamming attacks, lowpower
- Slicing
 - DoS
 - Economic costs to MNO
- **Goal**: Leverage smart algos & AI/ML to detect and mitigate threats at machine speed

Adversary covertly injects messages to the target, reveal presence of target in a given cell.

Example DDoS scenario

Background Problem Motivation Slice Threat Modeling SD-Core and Data Generation DCAE Closing the Loop

Yatis K. Dodia

Slice Threat Modeling

• Dynamic slice mobility threat

- Resource exhaustion
- Trigger auto-scaling of virtual resources
- Spin up unnecessary resources
 - MNO incurs costs
 - Degrades customer experience
 - Rinse and repeat
- Primarily an economic attack but also service degradation
- Simulated and demonstrated using SD-Core

Overview of DoS attack exploiting auto-scaling

Attack exploiting dynamic slice mobility

Background Problem Motivation Slice Threat Modeling SD-Core and Data Generation DCAE Closing the Loop

SD-Core | Overview

- Flexible and scalable 4G/5G Core
- Based on Free5GC
- 3GPP standards compliance
- APIs for runtime operational control (ROC)
- Good sandbox for 5G threat emulation

CLF

NETWORKING

SD-Core | Data | 5G Core

- Using the slicing threat scenario, we collect data from various VNFs:
 - AMF
 - SMF
 - NSSF (TBD)
- Monitor metrics to gauge health and proper functioning of slicing mechanics
- Data is captured and packaged into VES Events and sent upstream to ONAP's DCAE

Metric	Use
n11_messages_total	Add, modify, del PDU sessions
nrf_messages_total	Session transfers
process_cpu_seconds_total	Implementation and instance resource utilization

SNIE

AMF		
ngap_messages_total	PDU Session Resource and UE Context management	

metricfunc

nf_status	Status
smf_pdu_sessions	Count of sessions
smf_svc_stats	Various service stats

SD-Core | Data | Virtual Resources

- Compute infrastructure metrics
 - Memory
 - CPU utilization
 - Disk read/write ops and bytes
- Implementation specific metrics
 - Core VNF process info
 - SD-Core provides and open-source allows potential for extending data collection
- Finite resources are allocated to VMs, k8s pods, etc.
- If threat triggers auto-scaling, what does that look like to operator and the detection model?

Implementation Metrics

CLF

NFTWORKING

Metric	Use
info	Various info about the VNF process
VM additions and scaling Count of threshold triggers	Physical layer resource saturation and "yoyo-ing"
Stack and heap memory CPU utilization	Metrics exist for mem and call stack instrumentation
threads	Thread count of VNF processes

Background Problem Motivation Slice Threat Modeling SD-Core and Data Generation DCAE Closing the Loop

Yatis K. Dodia

DCAE Integration | VESPA

- **DLF** NETWORKING LFN Developer & Testing Forum
- VESPA converts the metrics captured by Prometheus into VES events
- A known metric can be formatted as a JSON object and marked for collection

Example Prometheus to VES Event Definition

VESPA Connection Between Prometheus and VES Collector

DCAE Integration | metric function

LFN Developer & Testing Forum

NETWORKING

CLF

- SD-Core has a built-in metricfunc which upstreams data into Kafka
- Send data from VNFs to Kafka, upstream consumer subscribes to specific topics
- Database or stream

DCAE Integration | Data Flow

- Data is housed and processed within DCAE
- Data persistence and routing all done within ONAP
- Any service can use/subscribe to data store

CLF

NETWORKING

Background Problem Motivation Slice Threat Modeling SD-Core and Data Generation DCAE Closing the Loop

Yatis K. Dodia

ML for 5G Cybersecurity

- 1. Threat actor on the network
- 2. Data and Event Generation
- 3. Data Collection
 - Scale
 - Machine speed
- 4. Data Packaging and Transport
- 5. AI/ML Analytics
- 6. Feedback into Network
 - Detection / Alert
 - Mitigation Actions

OLF

NETWORKING

Community Feedback

- Cybersecurity Discussion
 - How can open-source tools, such as ONAP, increase use cases for cybersecurity research / modeling?

TLF

- Data collection and analytics facilities are helpful
- Support for PyTorch (also part of LF...)?
- How would you handle distributed, large-scale data?
 - Centralized AI/ML?
 - What about federated or distributed learning?